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Abstract 

Bank regulation presumes risks spill over more easily from large banks to the banking system than 

vice versa. Yet, we document that risk transmission is stronger in the system-to-bank direction, because 

different bank activities affect the flow of risk differently in each direction. We term this phenomenon 

asymmetric systemic risk, measure it with net exposure metrics, and explore the consequences and 

channels behind it. We show that high-net-exposure banks faced higher default risk during the 2008 

crisis, and that trading activities and bank size were the main determinants of this net exposure, which 

increased default risk through trading income volatility. 
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1 

“...Supervision of large financial institutions is designed to: (i) enhance the resiliency of these firms, in 
order to lower probability of failure or inability to serve as a financial intermediary, and (ii) to reduce 
the impact on the financial system and the broader economy in the event of a firm’s failure or material 
weakness.” Board of Governors of the Federal Reserve System (2020) 

Introduction 

Large US banks are regulated with the explicit intention to limit their risk impact on the rest of the banking 

system. This impact is often termed systemic risk contribution (Adrian and Brunnermeier, 2016), reflecting 

the systemic risk transmission from the bank to the system. Regulations implemented through the Dodd-

Frank Act and the Basel III standard explicitly seek to reduce this transmission by making large banks 

subject to more complex regulations, higher capital requirements, and more regulatory scrutiny than smaller 

banks.1 At the same time, interconnectedness in the modern financial system also exposes large banks to 

shocks emanating from the rest of the banking system, creating systemic risk exposures in the system-to-

bank direction. This paper investigates what these directional risk linkages mean when interconnectedness 

is stronger in one direction than in the other, and what the effect of this asymmetry is on bank soundness. 

Furthermore, we explore the mechanisms behind this relation. We hypothesize that banks with different 

business models can undertake activities that affect their systemic contributions and exposures differently, 

thereby creating asymmetric (directional) linkages with the rest of the system that matter for individual 

bank stability. 

The recent literature has developed systemic exposure and contribution metrics, permitting researchers 

to quantify the flow of systemic risk between the bank and the system in each direction. For example, one 

common metric of systemic risk contribution is Adrian and Brunnermeier’s ΔCoVaR, while Acharya et al.’s 

(2017) marginal expected shortfall (MES) and Adrian and Brunnermeier’s Exposure ΔCoVaR are examples 

of metrics of systemic risk exposure. However, the literature has not yet considered what the directionality 

1The Dodd-Frank Act of 2012 strengthened existing measures and introduced new ones aimed at large banks, such as 
countercyclical capital buffers, DSIB capital surcharges, and annual stress tests, in order to increase solvency and prevent 
default risks from spilling over to the rest of the system. 
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of such systemic risk linkages implies if the linkage in one direction is stronger than in the other one. To find 

this out, we compare banks’ systemic exposures and contributions with a net exposure metric, and study 

the effect of asymmetric systemic risk transmission on bank stability. 

The importance of examining banks’ systemic exposures versus contributions can be illustrated with 

simple, but telling facts. Based on how large US banks are regulated, one would expect that their systemic 

risk contributions ought to exceed their systemic risk exposures, i.e., that their risks ought to spill over 

to other banks more easily rather than vice versa. More importantly, one would also expect that risk 

externalities generated by important banks are more detrimental to financial stability than their exposure to 

such risks. Surprisingly, however, we observe this is not the case. Figure 1 shows the average exposure and 

contribution for the 200 largest publicly traded US bank holding companies around the 2007–09 financial 

crisis.2 The figure shows that the average systemic exposure (the blue line) is consistently higher than the 

average contribution (the red line), resulting in positive net exposure (the difference between banks’ exposure 

and contribution). In addition, Figures 2 and 3 reveal that banks that experienced insolvency during the 

crisis3 (colored in red) had consistently larger exposures than contributions, therefore appearing to the right 

of each chart’s 45o line. These figures show this pattern holds for banks with different sizes (Figure 2) and 

individual default risk (Figure 3). 

Motivated by these facts and a toy model to build intuition, we hypothesize that banks’ net exposures 

result from business models that affect exposure and contribution differently, and more precisely, from the 

balance between traditional lending and non-traditional trading activities. Since this balance also impacts a 

bank’s risk-return profile, we hypothesize systemic risk directionality matters for banks’ individual stability. 

We predict that banks optimally choose involvement in trading activities because they provide a hedge 

against idiosyncratic shocks, thereby reducing banks’ systemic contributions, but at the cost of exposing the 

2Systemic risk measures in this figure are computed using Adrian and Brunnermeier’s (2016) ΔCoVaR and Exposure 
ΔCoVaR, defined in Section 4. 

3These are banks that failed, had a direct subsidiary fail, received an enforcement action by the FDIC, or were acquired to 
prevent failure. 
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banks to common shocks, which increase their systemic exposure. Thus, an optimally diversified portfolio 

consists of contribution-increasing traditional activities (e.g., real estate, household, and C&I loans) as well as 

exposure-increasing trading activities, which move exposure and contribution metrics in opposite directions. 

The net balance between these activities determines the bank’s overall net exposure. Since trading increases 

exposure and reduces contribution, the model predicts higher diversification towards trading increases a 

bank’s net exposure to systemic risk. Conditional on a crisis increasing cross-asset return covariances, the 

model predicts that high net exposure banks may face higher default risk through increasing the volatility 

of profits. 

We first test whether a bank’s business model is correlated with its systemic net exposure. For this, we 

relate balance sheet variables with a bank’s net exposure computed using Adrian and Brunnermeier’s (2016) 

ΔCoVaR and Exposure ΔCoVaR.4 Interestingly, we find that some variables that have been identified as 

a source of systemic risk (such as some non-interest income activities and the share of real estate loans) 

do not matter much for banks’ net exposures, whereas size, which has also been identified as a source of 

systemic risk, shows to be positively related to it. We also confirm our predictions and find that banks’ 

business models strongly correlate to banks’ net exposures. In particular, non-traditional activities proxied 

by the use of credit default swaps and trading activities increase a bank’s net exposure, whereas traditional 

household and C&I lending negatively affect a bank’s net exposure. To further understand though which 

channel bank characteristics affect banks’ net exposure, we decompose a bank’s net exposure into (1) the net 

simulated shock to the bank, that is, the difference between the losses to be transmitted to the bank when 

the system is in distress and the losses to be transmitted to the system when the bank is in distress, and (2) 

the net transmission factor, that is, the difference between the fraction of the simulated shock transmitted 

from the system to the bank and the fraction transmitted from the bank to the system. The analysis suggests 

that the effect of size, trading activities, and the use of credit default swaps on net exposure is due to their 

4We also test the robustness of our results using Acharya et al.’s (2017) MES (marginal expected shortfall) and Oordt and 
Zhou’s (2019a) tail beta. 
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impact on the net transmission factor and not on the net simulated shock to the bank, thus increasing the net 

fraction of losses transmitted in the system-to-bank direction. This is also the case for traditional lending, 

which decreases the net fraction of losses transmitted from the system to the bank. 

We confirm this asymmetry matters for banks’ stability. We use a variety of default risk measures 

(distance to default, Z-scores, and an indicator for insolvency based on banks’ default or cease-and-desist 

orders) to establish that net exposure before the global financial crisis meaningfully correlates with banks’ 

default risk during the crisis. This effect is economically significant. For example, one standard deviation 

increase in net exposure deteriorates a bank’s distance to default by 0.11 standard deviations, its log(Z-Score) 

by 0.34 standard deviations, and increases its probability of insolvency by 3 percentage points. 

Furthermore, we examine the channels behind this relation. We show that the effect on bank default 

risk is also driven by the net transmission factor rather than the net losses. In addition, in line with the 

model intuition, we find the link between the net transmission factor and insolvency runs through asset risk, 

increasing the volatility of trading income and profits. 

Taken together, the evidence in this paper suggests high-net exposure banks engaged in activities that 

increased systemic exposure and, in particular, the transmission linkages with the rest of the system, such 

as derivatives trading, leaving banks exposed to the soundness of other counterparties. With the extensive 

involvement in these activities, banks suffered from increased income volatility during the crisis, increasing 

default risk. Trading activities were carried out at the cost of performing other activities that would have 

increased banks’ systemic contribution but would have featured lower default risk, such as traditional lending 

activities. 

Our findings offer two important policy implications. First, interconnectedness in the financial system 

is directional, and future bank regulation will increasingly need to reflect this. Regulation should focus 

on containing and imposing buffers on high-net exposure banks, rather than just large banks or banks 

displaying high systemic contributions. Second, default risk increases with the net transmission factor, 
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which is positively related to size and trading activities. We argue that current bank supervision objectives 

can be achieved more efficiently if regulation focuses on reducing such net transmission factors, rather than 

buffering the default risks arising from them. Therefore, regulators should focus on monitoring banks’ size 

and further reducing banks’ interconnectedness through the derivatives market. 

Our paper contributes to three distinct strands of literature. First, it contributes to the literature studying 

systemic risk measurement. Most of these papers have focused on measuring systemic risk exposure. Acharya 

et al. (2017) propose to measure systemic risk through the marginal expected shortfall (MES), which is the 

expected loss of a financial institution conditional on the banking sector performing poorly. The SRISK 

(Brownlees and Engle, 2017) calculates the expected capital shortfall of a financial institution conditional on 

a severe market decline. Finally, van Oordt and Zhou’s (2019a) tail beta is an exposure metric estimating 

the sensitivity of a bank’s stock return to extremely adverse shocks in the financial system based on a 

few tail observations. There are also a few measures proposed to capture a bank’s contribution to systemic 

risk. Huang, Zhou, and Zhu (2011) combine default probabilities from CDS with stock returns correlations to 

calculate a Distressed Insurance Premium (DIP), which is the insurance premium required to cover distressed 

losses in the banking system. Thus, a bank’s systemic contribution corresponds to its marginal contribution 

to the hypothetical distress insurance premium of the whole banking system. Some measures are defined 

to capture both a bank’s systemic risk exposure and its contribution. Billio et al. (2012) characterize 

systemic risk by studying comovement through principal component analysis, thus capturing both a bank’s 

contribution and its exposure. Diebold and Yilmaz (2014) develop directional connectedness measures based 

on variance decompositions. Adrian and Brunnermeier (2016) also propose a measure that can be adapted 

to measure systemic risk in both directions. The Exposure ΔCoVaR and ΔCoVaR estimate the change in 

value at risk of a bank (or the banking sector, respectively) conditional on the banking sector (or the bank) 

experiencing a tail event. The results in our paper suggest that one must distinguish between systemic risk 

measures of exposure, contribution, and the difference between the two, as net exposure is what matters for 
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individual bank stability. 

A few papers have distinguished between banks’ systemic exposure and contribution when studying 

aspects of systemic risk. For instance, Pagano and Sedunov (2016) investigate systemic risk exposure and 

sovereign debt; Bostandzic and Weiss (2018) compare systemic risk contributions and exposures of US versus 

European banks; and Sedunov (2016) studies the determinants of banks’ exposure and performance for high-

exposure banks during the crisis. However, despite distinguishing exposures from contributions, these papers 

neither measure them in comparable units nor study the implications of their difference and, hence, of the 

asymmetry in the directionality of systemic risk. One exception is Diebold and Yilmaz (2014), who measure 

the net systemic contribution for US financial firms. They perform a descriptive univariate analysis of the 

net contribution of six troubled banks during the global financial crisis and find inconclusive results about 

the relationship between banks’ solvency and net contribution. To the best of our knowledge, ours is the 

first paper to comprehensively study the relation between net systemic risk and bank soundness. 

Second, our paper also contributes to the literature studying the relationship between banks’ default risk 

and pre-crisis systemic risk. These papers have found mixed or insignificant results about this relationship 

when using a bank’s exposure (e.g., Acharya et al., 2017; Fahlenbrach et al., 2012) or contribution (e.g., 

Sedunov, 2016). We extend this literature by showing that a bank’s net exposure predicts the bank’s 

insolvency during the crisis better than its pre-crisis exposure or contribution. 

Third, our paper also relates to the extant work on the determinants of systemic risk. This literature has 

focused on the effects of bank characteristics (e.g., Davydov et al., 2021; Brunnermeier et al., 2020; Bostandzic 

and Weiss, 2018; Laeven et al., 2016), banking sector competition levels (e.g., Anginer et al., 2014; Silva-

Buston, 2019), and country-level characteristics (De Jonghe et al., 2015; Anginer et al., 2014). Our study 

extends this work by taking into account the directionality of systemic risk when studying its determinants 

and thus, examining the determinants of a bank’s net exposure. Furthermore, we also investigate the 

determinants of its components, of the net transmission factor, and of the net losses. 
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The rest of the paper is organized as follows. Section 2 describes some stylized facts. Section 3 describes 

a toy model to build up the intuition of our hypothesis. Section 4 describes the data and our risk measures. 

Section 5 shows the empirical strategy and lays out results from the regression analysis. Section 6 concludes. 

Stylized Facts 

Based on how large US banks are regulated, one would expect that their systemic contribution is larger 

and more important for systemic stability than the exposure they face from remaining banks. The Federal 

Reserve explicitly states that the supervision of large financial institutions has two goals: to “enhance the 

resiliency of these firms” and “reduce the impact on the financial system and the broader economy in the 

event of a firm’s failure or material weakness.” (Board of Governors of the Federal Reserve System, 2020). 

In line with this, the Dodd-Frank Act and Basel III regulations introduced additional capital surcharges 

for globally systemically important banks, a new capital conservation buffer (CCB), countercyclical capital 

buffers (CCyB), and annual stress testing exercises (DFAST and CCAR) targeting banks and bank holding 

companies with assets above $ 1 billion (Haubrich, 2020). The intention of these regulations is to shield the 

system from these large, “too big to fail” banks by making them more resilient. 

It is therefore surprising to find that large US banks consistently face larger exposures from the rest of 

the system than they pose to it, resulting in positive net exposures. Figure 1 shows the average exposure 

and contribution of the top 200 US bank holding companies around the 2007–08 financial crisis, as measured 

by Adrian and Brunnermeier’s (2016) Exposure ΔCoVaR and ΔCoVaR.5 As the figure shows, large banks’ 

exposure (the blue line) is consistently higher than their systemic risk contribution (the red line).6 This is 

especially pronounced from 2007:Q3 on. Thus, the notion that large banks pose higher systemic risk than 

they face is not borne out by the data. 

Moreover, banks with high net exposures appear to systematically differ from the rest on a number of 

5All systemic risk measures are defined and discussed in Section 4. 
6A similar pattern is found in Diebold and Yilmaz (2014) when measuring banks’ exposure, contribution and net contribution 

based on variance decompositions. 
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dimensions. One such dimension is size. The left and right panels of Figure 2 plot contribution versus 

exposure for the 20 smallest and 20 largest banks in our sample, with the diagonal line indicating the locus 

where contribution equals exposure. While the small banks are evenly split by the diagonal in a 10:10 ratio, 

17 out of the 20 top banks appear below the diagonal with a positive net exposure. As evidenced by the 

dispersion of points in the figure, contribution alone or exposure alone are not very good correlates of bank 

size; net exposure, however, is. 

Figure 3 shows that banks with high net exposure performed worse during the crisis. Figure 3’s two panels 

show contribution versus exposure for the 20 safest and 20 riskiest banks in our sample, ranked according 

to their distance to default. While the safe banks in the left panel overwhelmingly feature negative net 

exposure, the risky banks to the right are mostly to the right of the main diagonal, featuring positive net 

exposure. In both Figures 2 and 3, banks with high insolvency risk7 (colored in red) appear to the right of 

the diagonal line, suggesting a positive correlation between insolvency risk and net exposure. 

To further understand the underlying differences between high and low-net exposure banks we inspect 

heterogeneities in several bank characteristics. Table 1 presents the standardized differences of bank charac-

teristics for banks with above- and below-median values of net exposure, before and during the crisis. High 

net exposure banks differ from the rest on a number of dimensions, the most important of which are higher 

involvement in trading and the CDS market, combined with high risk on the asset side through the extension 

of risky loans. 

For instance, Table 1 shows that pre-crisis, banks with high net exposures gave out more loans relative 

to assets and generated higher loan loss provisions than the rest, despite being larger and less leveraged. 

However, they also featured different loan portfolio compositions. In particular, when examining the various 

loan types, we observe high net exposure banks display a lower share of household loans and C&I loans. 

High net exposure banks also featured a more extensive involvement in trading activities and CDS markets, 

7See Section 4.3 for how we define banks with high insolvency risk. 
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offloading risk via larger net purchases of CDS protection, and lower involvement in mortgage back securities 

held for hedging. These differences, taken together, point to a departure from the traditional business model 

that generates substantial linkages with the rest of the system through trading and the CDS market, combined 

with high risk on the assets side through the extension of risky real estate loans. We, therefore, hypothesize 

and subsequently verify that these banks feature higher net exposures because of undertaking activities that 

affect exposure and contribution differently. 

Toy model 

Since it is not obvious why the same activity could affect exposure and contribution differently, we first build 

a toy model to inform intuition. We hypothesize that banks’ positive net exposures may be related to their 

business models and, more precisely, to the balance between traditional lending and non-traditional trading 

activities. 

We explore this hypothesis with a simple short-run, partial equilibrium portfolio choice model. There is a 

continuum of competitive, risk-neutral, profit-maximizing banks uniformly distributed over an interval [0,K] 

on the real axis. Each representative bank receives a deposit endowment of 1 and faces a portfolio choice 

problem of having to invest the endowment into an optimal mix of a low-risk, low-return asset (traditional 

lending) and a risky, high-return asset (trading), whose returns are exogenous (that is, the banks are price-

takers).8 

Because we model systemic risk, we cannot assume the two assets’ returns are uncorrelated; thus we 

orient the model towards a structure where asset covariance can be modeled tractably and explicitly. Such 

a structure is offered by modeling the joint asset returns as two correlated binary variables. Each bank 

optimally invests a share α of its deposits in trading (Y ), and 1 − α in traditional lending (X). In the event 

of a good outcome, lending gives a return of 1 (net of interest and principal paid to depositors), but with a 

8Previous literature shows non-traditional activities feature higher risk than traditional lending activities (see, e.g., DeYoung 
and Roland, 2001). Furthermore, among the different non-traditional activities, trading activities show to be riskier than other 
non-interest income sources (Chen et al., 2017; Stiroh and Rumble, 2006). 
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small probability p > 0, the borrower defaults and the net return becomes 0. Likewise, in the event of a good 

outcome, trading produces a return R > 1, but with a probability q > p, a bad outcome occurs and the net 

return is also 0.9 The two assets comove with an exogenously determined covariance Cov(X, Y ). Consistent 

with the risk/return trade-off, trading offers higher expected return in compensation for its higher risk, so 

EY > EX. The joint asset returns are shown in Matrix 1. 

Matrix 1: Joint Model Asset Returns 

Trading gain Trading loss 

Lending gain (1, R), p1 (1, 0), p2 

Lending loss (0, R), p3 (0, 0), p4 

Matrix 1 shows the joint asset returns for the two assets (X, Y ) for each 

possible combination of joint gains and losses, together with the associated 

probability of each outcome pτ . 

Since the joint outcomes are not independent, we assign to them probabilities p1 to p4 as shown in Matrix 

1. The binary structure of these random variables allows us to neatly express the above probabilities in terms 

of the two assets’ individual loss probabilities and their covariance: 

Lemma 1 The probabilities p1 to p4 can be expressed in terms of p, q and Cov(X, Y ) as: 

p1 = 1 − p − q + pq + R−1Cov(X, Y ) (1) 

p2 = q(1 − p) − R−1Cov(X, Y ) (2) 

p3 = p(1 − q) − R−1Cov(X, Y ) (3) 

p4 = pq + R−1Cov(X, Y ) (4) 

Proof: See Internet Appendix A. 

Based on the outcomes in Matrix 1, the representative bank maximizes the expected profit function 

E(π) = p1 [1 + α(R − 1)] + p2(1 − α) + p3αR − TC(α), (5) 

9These numbers can be linearly scaled or made negative as needed, but at the cost of significantly complicating the compu-
tation of the covariance term. They do not change the model’s outcome. 
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where TC denotes total costs. To allow for an interior solution, costs are assumed convex (quadratic) in 

each activity: 

TC(α) = α2 + (1 − α)2 = 1 − 2α + 2α2 . (6) 

The convex costs imply a strictly concave profit function, and therefore the optimal asset mix α∗ is given by 

the first-order condition 

∂E(π) 
= p1(R − 1) − p2 + p3R + 2 − 4α = 0 (7)

∂α 

producing an optimal solution 

α ∗ = 
1 
2 
+ 

h i1 
(1 − q)R − (1 − p)

4 
= 
1 
2 

1 
+ [EY − EX] ,
4 

(8) 

where we used the equations from Lemma 1 to simplify the expression. Thus, the optimal asset mix α∗ 

depends on the difference between the expected returns of the two assets and on the slope of the cost 

function.10 

We are interested on how trading (α) and lending (1 − α) affect a bank i’s systemic exposure from and 

contribution to the rest of the system. The system in this setting is modeled as the sum of remaining banks 

on the interval [0,K]\{i}, which we interpret as a single aggregate agent. Since this is a representative agent 

model, the aggregate bank’s profit Eπsys is the integration over the remaining banks’ profits 

Z 
Eπsys = Eπj dj. (9) 

[0,K]\{i} 

Since in reality the system’s profit is always larger than that of the individual bank, the empirical literature 

uses size-invariant units (such as percent or quantiles of the return distribution) to compare system and 

bank profits. In the model, we implement this by calibrating the continuum of banks [0,K] representing 

10The model should not be interpreted literally as predicting that banks invest half or more of their deposits in trading. The 
free term 1/2 in equation (8) is produced by the squared term in the quadratic cost function (6), chosen because it produces 
a tractable linear solution. This term can be made smaller by choosing a steeper cost function, but at the cost of sacrificing 
tractability. This does not change the direction of the effects in the model. 
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the full system to the unit interval [0, 1]. This is equivalent to positing that if i is an individual bank, then 

the rest of the system is represented by another bank with an analogous profit function, interpreted as an 

aggregate agent. The system and the individual bank interact through two stylized, reduced-form channels 

transferring the risk in the system-to-bank and bank-to-system direction. 

System-to-bank channel. Consistent with the empirics of the 2008 crisis, we assume that system-to-bank 

contagion occurs through common exposures to the risky asset Y . For exposition purposes, it is helpful to 

think of trading losses from Y as occurring contemporaneously across all banks, and of lending losses from 

X as not necessarily coincident with the trading shock, depending on Cov(X, Y ). Thus, the trading shock 

can be thought of as a systemic one (common to all banks), while the lending shock can be idiosyncratic, 

especially if Cov(X, Y ) is low or zero. A bank’s exposure to the system will therefore be a function of 

this common negative trading shock. To make model concepts consistent with the empirical analysis that 

follows, we closely follow the spirit of Adrian and Brunnermeier (2016) in defining a model analog of a bank 

i’s systemic exposure. Thus, we define i’s exposure to the system as the drop in i’s individual bank profits 

relative to their unconditional mean,11 conditional on a common systemic (trading) shock corresponding to 

the bad realization of the risky asset Y = 0: 

E = Eπ ∗ − E(πi|Y = 0). (10)i 

This definition emulates Adrian and Brunnermeier’s (2016) empirical exposure metric Exposure ΔCoVaR 

used in Figures (1) to (3).12 

The trading shock Y = 0 occurs in the two events associated with probabilities p2 and p4 in Matrix 1, 

11Adrian and Brunnermeier (2016) use the median of the return distribution. 
12The model definition is a conceptual analog of the Exposure CoVaR measure, but should not be interpreted as being literally 

identical, since the model’s main purpose is to build intuition. For tractability reasons, we use means rather than medians, the 
profit distribution rather than stock return distribution, etc. For the same reasons, certain decompositions that can be done 
with the empirical CoVaR’s are not straightforward with the model ones (e.g. decomposition into a transmission factor and a 
return shock). 

12 



resulting in an associated conditional profit function 

p2(1 − α) + p4 · 0 p2(1 − α)
E(πi|Y = 0) = − TC(α) = − TC(α), (11)

1 − p1 − p3 q 

where we used the identity (1 − p1 − p3) = p2 + p4 = q to simplify the expression. Thus, a bank’s systemic 

exposure is the difference between the equilibrium profit Eπ∗ and the conditional profit (11). 

Bank-to-system channel. The individual bank i can also transmit risk to the system if i’s profits deterio-

rate. This transmission happens through the counterparty risk channel. Real-world banks use their revenues 

to settle end-of-day payments and repay intraday loans on the interbank loan market; a deterioration in 

revenues (profits) increases this counterparty risk commensurate with the drop in i’s profits. For model 

purposes, we therefore define i’s systemic risk contribution as the drop in system profits conditional on a 

bad shock or a combination of shocks si = {Xi = 0 ∪ Y = 0} to bank i: 

C = Eπ ∗ − E(πsys|si). (12)sys 

This definition emulates Adrian and Brunnermeier’s (2016) metric ΔCoVaR. In the model, i’s profit drop 

relative to the mean affects the second (aggregate) bank in a one-to-one fashion, because the aggregate bank 

has the same profit function; the interpretation is that shocks making one bank unstable transfer over to the 

second (aggregate) bank. Such negative shocks to profits occur in the events associated with probabilities 

p2, p3 and p4 at or below the main diagonal of Matrix 1. The associated conditional profit function is 

Z 
p2(1 − α) + p3αR + p4 · 0E(πsys|si) = E(πj |si)dj = − TC(α), (13) 

[0,1]\{i} 1 − p1 

where we used the fact the excluded bank i is small relative to the market and has a measure of zero. Using 

this setup, one can obtain the following results: 

Proposition 1 Near the optimal asset mix α∗ , a bank’s systemic exposure E increases in α and its systemic 
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contribution C falls in α: 

∂E ∂C 
> 0, < 0, (14)

∂α ∂α α∗ α∗ 

provided that the riskier asset has a higher return (EY > EX), but not so high as to be incomparable: p
R < κ + κ2 − 2p, where κ = q−1[2(1 − q(1 − p))− p]. Moreover, net exposure E(α) −C(α) strictly increases 

in α. 

Proof: See Internet Appendix A. 

The intuition behind this result is based on the costs and benefits of diversification. Investing a positive 

amount α in a trading asset Y increases both the bank’s exposure to common trading shocks and its resilience 

to negative lending shocks because of hedging. The former effect increases the risk of the individual bank 

scoring a trading loss together with all other banks. The latter effect reduces the drop in bank profits 

conditional on a lending shock through the trading asset’s use as a hedge at least some of the time, which 

reduces the bank’s systemic contribution C. As it turns out, the effect of hedging can be quite significant 

even if the two assets’ returns are positively correlated. The main reason for this is the fact that Y has a 

higher loss probability, which puts an upper bound on cross-asset covariance. Using equations (2) and (4), 

this covariance bound can be shown to be −pqR ≤ Cov(X, Y ) ≤ Rp(1−q). Using this, one can show that the 

minimum fraction of cases where, given a loss on any one asset, the other one scores a profit, is (q −p)/(p+q). 

For example, when p = 0.05 and q = 0.20, the realized loss is hedged at least 60% of the time. For p = 0.05 

and q = 0.25, this fraction is 67%. Thus, diversification increases profits both because hedging improves the 

average profit and because the riskier asset Y has a higher return. This suggests that moving away from a 

strictly one-asset model (e.g. traditional lending) towards some trading is not only profit-maximizing, but 

also helpful for risk management, since hedging, as an active risk-management technique, increases a bank’s 

resilience to shocks from its lending business, thereby reducing its systemic risk contribution. Empirical 

evidence already suggests that banks use derivatives for this purpose (Silva-Buston, 2016). This, however, 

occurs at the cost of increasing exposure to trading shocks common to all banks, which increases risk flow 
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in the system-to-bank direction (i.e. exposure), as shown by the first part of Proposition 1. 

Therefore, the model suggests trading involvement can have opposite effects on different systemic risk 

measures: it increases systemic risk when measured by an exposure measure, and reduces systemic risk when 

measured by a contribution measure. Traditional activities, as a substitute, exert the opposite effects. This 

provides plausible insight into the empirical facts in Table 1. Moreover, based on the same logic, it can be 

shown that at the optimal asset mix α∗ , exposure exceeds contribution: E(α∗) > C(α∗). Therefore, the 

observed positive net exposures in Figure 1 and Table 1 could be the outcome of optimal diversification 

behavior by large banks. 

Diversification, however, could have negative implications during a crisis if the covariance of assets goes 

up. For example, the 2008 financial crisis was characterized both by a jump in mortgage defaults and a 

simultaneous derivatives market decline. Table 1 shows banks with above-median net exposures exhibited 

higher default risk during the crisis, measured by metrics such as Z-Scores. To explore the effect of diversifi-

cation on default risk, we therefore create a corresponding “model Z-Score” variable and explore its behavior 

conditional on a crisis, modeled as an increase in Cov(X, Y ). A Z-Score is constructed as the ratio of banks’ 

buffers, measured by their returns, and their risks, measured by their returns’ standard deviations (Roy, 

1952). Thus, a higher Z-Score indicates better bank stability, and a lower Z-Score, higher default risk. In 

the model context, we analogously define 

1 + Eπ 
Z − Scoremodel = p (15) 

V ar(π) 

and explore what happens to bank stability conditional on an increase in Cov(X, Y ).13 

Proposition 2 Recalling that a lower Z-Score implies higher default risk, 

(i) At the optimal diversification point α∗ , default risk is increasing in net exposure defined as NE ≡ 

E(α) − C(α): 
∂(Z − Scoremodel)

(α ∗ ) < 0. (16)
∂NE 

13This Z-Score definition closely follows Lepetit et al. (2008). 
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(ii) Conditional on a crisis that increases Cov(X, Y ), diversified banks face higher default risk compared to 

non-diversified banks and compared to the pre-crisis period. ⎧ ⎪⎨< 0 if α ∈ (0, 1) and∂(Z − Scoremodel) 
(17)

∂Cov(X, Y ) ⎪⎩= 0 if α = 0 or α = 1. 

(iii) Cov(X, Y ) increases default risk through increasing the volatility of profits V ar(π). 

Proof: See Internet Appendix A. 

This result shows three related phenomena. Firstly, since trading increases exposure and reduces contribu-

tion, more trading means a higher net exposure, but such higher exposures increase default risk because the 

possibility of two coincident bad shocks means higher profit variance (part (i)). Secondly, while diversifica-

tion helps hedge bank-specific shocks, when cross-asset covariance goes up, the volatility of profits goes up 

because the two negative profit shocks occur together more often, increasing the probability mass associated 

with this tail outcome. As a consequence, any stability metric using profit volatility as an input (such as a 

Z-Score or distance to default) ought to register heightened default risk, all else equal (parts (ii) and (iii)). 

This suggests that diversification may result not only in asymmetrical risk linkages between the bank and 

the system, but also in heightened default risk during a crisis. 

The model thus provides a number of testable implications: (1) That trading activity resulting from 

optimal diversification can affect exposure and contribution measures of systemic risk in opposite ways. 

This occurs because trading helps hedge bank-specific risks, but at the cost of increasing banks’ exposure 

to common shocks to which they would not otherwise be exposed; (2) That traditional lending, being a 

substitute to trading, moves the above systemic risk measures in directions opposite to that of trading 

activity; and (3) That high net exposure, which arises naturally from these opposite effects, correlates with 

higher crisis default risk. In the next sections, we subject our toy model to a formal empirical test of these 

implications. 
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4 Data and Risk Measures 

In this section, we present the data and risk measures used to test our empirical predictions. To measure both 

systemic risk exposures and contributions, we rely on the observation of Adrian and Brunnermeier (2016) 

that one can compute both the comovement of an individual bank against a system-wide shock as well as 

the comovement of the system in response to a bank-specific shock using different conditioning on the same 

data. The interchangeability of the individual bank and the system in the ΔCoVaR and Exposure ΔCoVaR 

calculations ensures these two systemic risk metrics measure systemic risk contribution and exposure in a 

methodologically consistent way. We extend this approach by creating consistent exposure and contribution 

risk metrics from other market-based systemic and systematic risk measures, such as Acharya et al.’s (2017) 

MES and van Oordt and Zhou’s (2019a) tail beta. 

To compute systemic risk measures and study their relationship to bank-specific covariates and default 

risk, we combine data from several sources. We obtain quarterly bank-level data from the Federal Reserve’s 

Form FR-Y9C, containing the balance sheets of US bank holding companies. Since systemic risk asymmetries 

are surprising only for large banks, we focus our analysis on the top 200 US commercial bank holding 

companies as of Q4:2006. We combine this data with daily share-price information from Bloomberg. This 

database provides daily stock price information and stock market indices for listed companies, which are 

some of the inputs for the calculation of the individual and systemic risk measures. To match the frequency 

of the balance sheets, our bank-level risk measures are computed quarterly from the daily Bloomberg data 

over the relevant time window for each measure. We also compute discrete default risk measures from FDIC 

enforcement actions, known as cease-and-desist orders, sourced from the FDIC’s enforcement decisions and 

orders (ED&O) database, as well as from public information on bank defaults (see the Insolvency dummy 

subsection below). To control for government aid received, we identify banks aided by the Troubled Assets 

Relief Program (TARP) using the TARP recipient list from the US Department of the Treasury. The latter 

two discrete measures are time-invariant. 
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Following Bertrand et al. (2004), we collapse the time series information in the data and convert it 

to a panel with two periods: pre-crisis and crisis, containing the period’s average for each bank.14 As in 

Fahlenbrach et al. (2012), we define the crisis as Q3:2007–Q4:2008, and the pre-crisis period, symmetrically, 

as Q1:2006–Q2:2007, including the endpoints. However, our results are robust to the choice of period 

length.15 

The data we thus assemble, therefore, contains a cross-section of the top 200 US bank holding companies 

observed during the crisis, with lagged controls from the pre-crisis period.16 The summary statistics for the 

sample are provided in Table 2. Variable definitions and data sources are listed in Internet Appendix B. 

4.1 Systemic risk measures 

4.1.1 ΔCoVaR and exposure ΔCoVaR 

As our main systemic risk measures, we adopt Adrian and Brunnermeier’s (2016) ΔCoVaR and Exposure 

ΔCoVaR. These two measures evaluate the extent to which a shock to a bank’s return (system’s return, 

respectively) moves the system’s (bank’s) return. The shock is simulated as a drop from the median to the 

bottom q% quantile of the relevant return distribution. The regular (i.e., contribution) ΔCoVaR shocks the 

bank’s return to determine its effect on the system, while Exposure CoVaR shocks the financial system’s 

return to determine the effect on the bank. 

Adrian and Brunnermeier (2016) define a bank i’s contribution ΔCoVaRC as follows. If q is a specific 

quantile of the stock return distribution, Ri the stock market return of financial institution i, and Rs that 

of the system (empirically proxied by the S&P Banking index return), then the impact of institution i on 

the system equals the change of the system’s value at risk conditional on a shock moving bank i from its 

14Bertrand et al. (2002) show that collapsing the times series information into pre-crisis and crisis periods corrects standard 
errors that are otherwise inconsistent when running difference in difference estimations with serially correlated outcomes. 

15We also explore other definitions. For example, Cornett et al. (2011) define the crisis as Q3:2007–Q2:2009, and Huang et 
al. (2012), as Q3:2007–Q4:2009. Our results remain qualitatively very similar using these alternative periodizations. 

16Not every bank has a valid value for every balance sheet variable, thus some robustness regressions feature slightly fewer 
than 200 banks. For our baseline regressions, we select the sample as the top 200 US BHCs with nonmissing CoVaR and 
Exposure CoVaR as of the last quarter before the crisis (2007:Q2), so these regressions always have 200 banks. 
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median state to its q-percent quantile. More formally, 

s|Ri =V aR q
i 

s|Ri =V aRi 
50ΔCoV aRC = CoV aR − CoV aR , (18)i,q q q 

where CoVaR is the value at risk of the system’s return conditional on the state of bank i (corresponding to 

the bank’s q-th percentile in the first term and its median state in the second one).17 Exposure ΔCoVaR, 

which captures the system’s influence on the bank, is defined by interchanging the place of the bank and the 

system in equation (18) to obtain: 

i|Rs =V aR q
s 

i|Rs =V aRs 
50ΔCoV aRE = CoV aR − CoV aR . (19)i,q q q 

Adrian and Brunnermeier (2016) show that ΔCoVaR and Exposure ΔCoVaR can be equivalently expressed 

as the product of a risk transmission factor β times a shock to the relevant entity’s return from the median 

to the q-th percentile: 

ΔCoV aRC = βC (V aRi − V aRi (20)i,q i q 50) 

ΔCoV aRE = βE (V aRs − V aRs (21)i,q i q 50), 

where ΔCoV aRC and ΔCoV aRE respectively denote Contribution and Exposure ΔCoVaR for bank i,i,q i,q 

calculated at q%; V aRq and V aR50 are the q% and median value at risk, indexed with i for the individual 

bank and with s for the system, and the β coefficients capture what fraction of the simulated shock transmits 

from the bank to the system (βC ) and vice versa (βE ). The CoVaR is the first mainstream, market-based 

family of measures evaluating the flow of risk in either direction. This is done in a methodologically consistent 

way because the place of the bank and the system is interchangeable in the risk calculation, shocking each 

respective entity to make it equally worse off (at its 5% VaR).18 More importantly, the risk transmission 

17The conditional value at risk for the system, CoV aRs , is implicitly defined by the equation Pr Rs|C(Ri) ≤ � 
q 

s|C(Ri )CoV aRq = q% , where C(Ri) is some event affecting bank i’s return Ri. 
18It is reasonable to ask whether the system shock (the 5% VaR of the banking index) is comparable to the 5% VaR shocks 

of the individual banks. The summary statistics show no evidence that the two shocks operate on a different scale, but 
nonetheless, we explicitly test for this in a series of unreported robustness tests. In them, we construct the system shock for 
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factors β are inherently comparable by design: β’s simply measure the rate of risk transmission in the 

relevant direction (system-to-bank and vice versa) completely independent of the shock component. CoVaR 

betas thus consistently measure the individual bank’s and the system’s sensitivity to each other. We follow 

Adrian and Brunnermeier (2016, Section II.B) in estimating the VaR and β components in equations (20) 

and (21) with the quantile regression approach using q set to 5.19 For ease of interpretation, we take the 

negatives of CoVaR and Exposure CoVaR, so higher values indicate larger systemic risk. 

Table 2 shows that Exposure ΔCoVaR consistently exceeds ΔCoVaR both before and during the crisis, 

resulting in a positive NetΔCoVaR (this is also shown graphically in Figure 1). This indicates that as a whole, 

the large US banks forming our sample were more exposed to spillovers from the system than vice versa. 

Before the crisis, the average exposure and contribution were 0.013 and 0.012, respectively. Both figures 

increase during the crisis, rising to 0.044 and 0.027, respectively, and maintaining the positive difference. 

The standard deviations of both measures also increase during the crisis, rising from 0.008 and 0.007 before 

the crisis (for the exposure and the contribution, respectively), to 0.027 and 0.016 during the crisis. 

4.1.2 Other systemic risk measures 

Since systemic risk metrics differ in the extent to which they capture comovements under extreme stress, 

we robustify our analysis with two additional systemic risk measures suitably modified to measure systemic 

risk in both directions: tail beta and MES. 

Exposure tail beta and contribution tail beta. Firstly, we use van Oordt and Zhou’s (2019a) 

exposure metric tail beta βT
E , which captures the sensitivity of a bank’s stock market return to extremely 

adverse shocks to the financial system, based on just a few tail observations. It is interpreted as the regression 

coefficient from a regression of the bank’s return Ri,t on the system’s return Rs,t, restricted to the tail of 

Exposure CoVaR as the cross-sectional average of the sampled banks’ individual shocks. This did not change our results, which 
remained quantitatively and qualitatively similar. 

19Following Adrian and Brunnermeier (2016), we require banks to have at least 260 weeks of equity return data to be included 
in the sample, and estimate this model over a long time period, from 1999 to 2016, thus allowing reasonable inference. 
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the system’s return where the latter is smaller than a pre-specified quantile V aRs . The regression isq 

Ri,t = βE for Rs,t < −V aRs . (22)T,iRs,t + εi,t q 

By analogy, we create a contribution tail beta βC by running the regression in the opposite directionT,i 

= βC for Ri,t < −V aRi . (23)Rs,t T,iRi,t + �i,t q 

This type of regression is estimated with extreme value theory (EVT) methods, detailed in Internet Appendix 

C. 

Exposure MES and contribution MES. Acharya et al.’s (2017) MES (marginal expected shortfall) 

is a reduced-form exposure metric aiming to capture the expected capital shortfall of individual bank i, 

conditional on stress in the rest of the system. These authors have shown that MES is a powerful predictor 

of the institutions affected by the 2008 crisis. This exposure measure, which we label MESE , is constructed 

as the average of bank i’s daily returns, taken over the days where the system’s returns are within their worst 

5% for each quarter. We create a contribution analog of this measure, MESC , by averaging the system’s 

daily returns, taken over the days where bank i’s returns are within their worst 5% for the quarter. This 

construction is detailed in Internet Appendix C. 

4.2 Net systemic risk measures 

We have hypothesized that banks’ business models have opposite effects on banks’ exposure and contribution, 

and that default risk during the crisis is positively related to banks’ net exposure (the difference between 

its exposure and contribution). Banks with positive net exposures feature a stronger system-to-bank risk 

transmission, whereas banks with negative net exposures feature a stronger bank-to-system transmission. 

Since we can measure the risk in each direction for each of the three bidirectional measures ΔCoVaR, βT , 
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or MES discussed above, we define the corresponding net measure as follows: 

Net Measurei,t = MeasureE (24)i,t − MeasureC 
i,t, 

where Measure equals ΔCoVaR, βT , or MES, and the superscripts E and C index the exposure and 

contribution version of the metric, respectively. 

Table 2 shows the descriptive statistics for the net exposure measures. Our main net measure, Net 

ΔCoVaR, has an average value of 0.001 before the crisis, which increases to 0.018 after the crisis. The table 

also shows that there is significant variation in this variable: the 25th and 75th percentiles, respectively, are 

-0.003 and 0.006 before the crisis, and 0.009 and 0.027 during the crisis. 

The three systemic risk measures complement each other by capturing different systemic risk aspects. For 

example, ΔCoVaR’s components give a 100% weighting to the bottom q% quantile; MES, on the contrary, 

gives equal weight to all quantiles below the q% quantile and zero weight to remaining quantiles (Hull, 2006); 

and tail beta uses all observations below the q% quantile. Therefore, they produce non-identical, but similar 

results. 

Table 3 shows that ΔCoVaR, MES, and tail beta are positively correlated in all of their versions – 

exposure, contribution, and net. Being equally weighted below the cutoff, MES correlates strongly with 

both tail beta and ΔCoVaR (28%–59% with ΔCoVaR, and 30–38% with tail beta). Regardless of their 

different construction, ΔCoVaR and tail beta are also positively correlated everywhere, only less consistently 

across different versions (4%–47%). This is likely because ΔCoVaR focuses solely on the location of the q% 

quantile, while tail beta uses information from all observations within the q% tail. However, when applied to 

the data, all three measures paint a similar picture; as before, we use Net ΔCoVaR as our principal measure 

and the other two for robustness. 

Table 4 shows the top 50 banks with the largest net systemic exposure in the pre-crisis period acording 

to Net ΔCoVaR. The table reveals the presence of large important banks, such as Bank of America and 
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Citigroup, as well as banks that later faced insolvency problems, such as Wachovia, Irwin Financial, and 

Nexity Financial. 

4.3 Individual risk metrics 

To study the relation between systemic risk asymmetries and bank default risk, we measure individual bank 

risk with metrics such as distance to default, accounting Z-scores, and a dummy variable for insolvent or 

risky banks. 

Distance to default. As a default risk metric, we use the classic distance to default (DD) based on 

the Merton bond pricing model (Merton, 1974).20 Its calculation is detailed in Internet Appendix C. The 

distance to default is a measure of distance to insolvency; a higher value of this variable indicates better bank 

soundness. Table 2 shows this measure substantially decreases during the crisis, indicating higher default 

risk, as expected. The pre-crisis average equals 8 and decreases to 2.9 in the crisis period. 

Z-Scores. As an alternative measure of individual default risk, we compute each bank’s pre-crisis and 

crisis accounting Z-Score (Roy, 1952). Z-Score is widely used in the literature examining banks’ stability 

(e.g., Demirgüç-Kunt and Huizinga, 2010; Houston et al., 2010, and many others). This measure captures 

banks’ buffers, measured by their returns, and their risks, measured by the returns’ standard deviations. It 

is calculated as 

ROAi,t + (Total equity capitali,t/Total Assetsi,t)
Z-Scorei,t = , (25)

σROAi,t 

where ROA is a bank’s return on assets (ROA) and σROA is the standard deviation of ROA, calculated 

over the relevant period (pre-crisis and crisis). In separate regressions, we also split this measure into its 

numerator and its denominator. 

As the distance to default, the Z-Score is also a measure of distance to insolvency; thus, higher values 

indicate lower default risk. The average Z-Score decreases from 3.4 to 3.1 during the crisis. 

Insolvency dummy. As a third measure of individual default risk, we construct a dummy variable 
20This data was calculated and provided courtesy of the Bank of Canada’s Financial Institutions division. 
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called Insolvency, flagging the banks with high risk of insolvency during the crisis. We set the Insolvency 

dummy equal to 1 for banks that failed, were acquired to prevent failure, had a direct subsidiary fail, or had 

an enforcement action known as a cease-and-desist order issued by the FDIC during the crisis.21 Such an 

order is issued if a bank engages in unsafe and unsound practices or violates a law, rule, or regulation, a 

condition imposed in writing by the FDIC, or a written agreement with the FDIC (Federal Deposit Insurance 

Corporation, 2019). The information comes from the FDIC’s list of failed banks, the FDIC’s enforcement 

decisions and orders (ED&O) database, and publicly available information on banks acquired as a result of 

financial trouble. Table 2 shows that 11% of the banks in the sample faced such insolvency risk during the 

crisis. 

5 Empirical Strategy and Results 

5.1 Determinants of net systemic risk exposure 

Proposition 1 in our model suggests that banks with different business models can undertake activities 

that affect their systemic contributions and exposures differently, thereby creating asymmetric (directional) 

linkages with the rest of the system. We test this hypothesis in this section and examine the balance sheet 

determinants of a bank’s systemic risk exposure, contribution and net exposure. For this, we relate the 

systemic risk measures averaged in the crisis period to lagged bank balance sheet variables averaged in 

the pre-crisis period, using a cross-section model. Besides examining business models, we also follow the 

literature and investigate banks’ funding structure and derivatives usage. 

We start by investigating our model’s primary net exposure determinant: a bank’s business model. For 

this purpose, we examine banks’ non-interest income. The bank risk literature shows that different non-

interest income sources have a different relationship with bank risk (Stiroh and Rumble, 2006; Chen et al., 

2017). Therefore, we split non-interest income into securitization revenue, fiduciary income, and trading 

21To reduce the results’ sensitivity to the specific definition of the crisis period in this risk measure we include banks that 
failed all the way up to Q4:2010. 
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income. We include all three variables measured as a fraction of total income. We also include loan loss 

provisions over total loans and ROA to study banks’ risk-return profiles. 

Non-interest income activities have been shown to be more volatile than traditional sources of income 

(DeYoung and Roland, 2001), and banks would earn income in the same correlated non-interest income 

activities, thus increasing banks’ systemic risk exposure and contribution (Brunnermeier et al., 2020). At 

the same time, lower portfolio quality has been documented to positively relate to banks’ systemic exposure 

and contribution (see, e.g., Brunnermeier et al., 2020). On the other hand, as documented in the previous 

literature (e.g., Davydov et al., 2021; van Oordt and Zhou, 2019a), profitability is associated with lower 

levels of systemic risk exposure and contribution. The results of this analysis are displayed in Table 5. The 

model in column (1) shows higher securitization income is related to higher systemic risk exposure, but only 

weakly; whereas it is not significantly related to a bank’s systemic risk contribution, as shown in column 

(6). In line with the previous literature, fiduciary activities also enter with a positive and significant sign in 

this model, suggesting a higher share of this particular non-traditional activity is related to a higher bank 

contribution to systemic risk. In line with the intuition in our toy model, trading increases exposure, and 

might reduce contribution, but the effect’s significance on the individual exposure and contribution measures 

is weak. Lower loan loss provisions and higher ROA do not enter significantly in column (1), whereas they 

show to be positively related to systemic contribution in column (6). By contrast, when we investigate the 

net systemic risk exposure in column (11), we find trading activities in the pre-crisis period to be related 

to higher net systemic risk exposure, whereas securitization revenue is negatively related to net exposure. 

Loan loss provisions and profitability are insignificant in this model. Results remain similar when including 

all controls in columns (5), (10), and (15). However, among the non-interest income variables, only trading 

activities remain positive and highly significantly related to net exposure, consistent with model predictions. 

Second, we consider a bank’s loan portfolio. This allows us to examine a bank’s exposure to traditional 

activities. To this end, we follow Brunnermeier et al. (2020) and include loans over total assets and the share 
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of real estate loans, commercial loans, and household loans over total loans. The literature shows mixed 

results about the relation between systemic risk and the share of loans (see e.g., Bostandzic and Weiss, 2018). 

A bank’s portfolio mix has been identified as a key driver of systemic risk during the crisis, and in particular, 

the share of real estate loans (Herring and Wachter, 1999; Crowe et al., 2011). Column (2) suggests no 

significant relationship between a bank’s loan portfolio composition and its systemic exposure, whereas, 

when we study a bank’s contribution (column (7)), we find a higher proportion of real estate, commercial 

and household loans to be related to higher contribution to systemic risk, consistent with model predictions. 

Results remain similar when including all controls in columns (5) and (10). On the other hand, when we 

look at the relationship between loan portfolio composition and net exposure in column (12), we find a 

higher proportion of commercial and household loans to be related to lower net exposure. The proportion of 

real estate loans also enters with a negative sign but is not significant. Results are similar when we include 

all controls in column (15). Thus, significant involvement in traditional loan types decrease a bank’s net 

exposure to systemic risk, as predicted by the model. 

In the next columns, we follow the systemic risk literature and study how various other balance sheet 

variables relate to net systemic risk. Thus, in a third set of regressions, we study the relationship between 

banks’ systemic risk and funding structure. To this end, we include leverage and deposits over loans in 

our regressions. The previous literature, however, shows mixed results on the relationship between funding 

structure and systemic risk – both exposure and contribution (see, e.g., Brunnermeier et al., 2020; Bostandzic 

and Weiss, 2018; Beltratti and Stulz, 2012). In line with these mixed results, columns (3) and (8) suggest no 

significant relationship between a bank’s funding structure and a bank’s systemic exposure or contribution. 

This remains unchanged when we look at a bank’s net exposure. Column (13) suggests no relationship 

between a bank’s funding structure and its net systemic exposure, as shown by the insignificant coefficients 

in this model. Results remain similar when including all controls in columns (5), (10), and (15). 

Fourth, we consider derivatives usage to proxy for interconnectedness and complexity. For this, we study 
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gross and net CDS positions over total assets,22 and mortgage back securities (MBS) held until maturity over 

total assets. Derivatives can be used for risk management purposes, thus containing losses in crisis periods 

(Silva-Buston, 2016). However, they also increase interbank linkages as banks act as counterparts of each 

other. Therefore, the effect on systemic risk is ambiguous. Column (4) suggests no significant relationship 

between a bank’s interconnectedness and systemic exposure, while the model for bank contribution shows 

that higher MBS held to maturity are related to higher systemic contribution. By contrast, higher gross CDS 

positions are related to a lower systemic risk contribution, probably due to hedging benefits, as predicted 

by our toy model. Results remain similar when including all controls in columns (5) and (10). Since high 

contribution reduces net exposure, we find the opposite result when we study net systemic exposure in 

column (14): a higher MBS held until maturity is related to a lower net systemic exposure. The net CDS 

protection bought also enters with a (weakly) significant and negative sign when we include all controls in 

column (15), while the gross CDS position turns significant and positively related to the net exposure in this 

model. The MBS are not significant in this model. 

Finally, we include bank size, measured by the logarithm of assets, in all models since bank size is 

documented to be one of the main drivers of systemic risk exposure and contribution (e.g., Brunnermeier 

et al., 2020; Bostandzic and Weiss, 2018). In line with this literature, the logarithm of assets enters with a 

positive and significant sign in all models, including the net systemic exposure models, suggesting that large 

banks display not only high exposure and contribution, but also high net systemic exposure. This confirms 

the intuition conveyed by Figure 2. 

The effects on net systemic exposure are also economically significant. Considering the coefficients in the 

last column of Table 5, a one standard deviation increase in size (1.52) is related to a rise of 0.29 standard 

deviations in net exposure CoVaR. By contrast, a one standard deviation increase in commercial loans (0.1) 

and household loans (0.07) is related to a reduction by 0.31 and 0.38 standard deviations in net exposure 

22Unfortunately, FR-Y9C data does not report the amount of credit derivatives held for risk management purposes versus 
trading. Thus, we include in our models the aggregate amount of credit derivatives. 
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CoVaR, respectively. In addition, a one standard deviation increase in derivatives trading income (0.01) and 

gross CDS positions (0.006) is related to a respective rise of 0.20 and 0.18 standard deviations in net CoVaR 

during the crisis. We obtain similar results in unreported robustness tests using the alternative systemic risk 

measures MES and tail beta. 

In Table 6, we investigate the determinants of the components of the net CoVar exposure. Columns 

(1) to (5) examine the net transmission component (net β CoVaR), and columns (6) to (10) examine the 

net losses component (net shock CoVaR). We find that the proportion of commercial loans and household 

loans are strongly negatively related to the net fraction transmitted from the system to the bank. Taking 

the coefficients in column (5), a one standard deviation increase in commercial loans and household loans 

is related to a reduction of 0.30 and 0.44 standard deviations in the net β, respectively. Conversely, bank 

size, trading activities, and gross CDS positions are positively related to the transmission component. A 

one standard deviation increase in size, trading income, and gross CDS positions is related to an increase of 

0.32, 0.17 and 0.20 standard deviations, respectively, in net β during the crisis. 

When we examine the net losses in the next five columns, we find that trading activities reduce the net 

losses to be transmitted to the bank when the system is in distress. In contrast, fiduciary income, leverage, 

and the proportion of commercial loans and household loans, are related to higher net losses to be transmitted 

to the bank, as shown by the models in columns (6) to (10). When considering the coefficients in column 

(10), a one standard deviation increase in fiduciary income, leverage, commercial loans, and household loans 

is associated with a respective increase of 0.18, 0.19, 0.35, and 0.40 standard deviations in the net shock. 

By contrast, a one standard deviation increase in trading income is related to a reduction of 0.18 standard 

deviations in the net shock. 

The analysis in this section offers several lessons. It confirms the model’s predictions that banks with dif-

ferent business models undertake activities that affect their systemic contributions and exposures differently. 

In particular, trading activities increase net exposure, whereas higher involvement in C&I and household 
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loans decrease net exposure. Furthermore, the results show that even though some balance sheet variables, 

such as the share of real estate loans, have been previously identified as a source of systemic risk, they do 

not significantly increase and can even decrease net systemic exposure. At the same time, size, which has 

also been identified as a key determinant of both exposure and contribution, increases net systemic exposure. 

The analysis suggests that the effect of size and trading activities on net exposure is due to their effect on 

the net transmission factor, thereby increasing the net fraction of losses transmitted from the system to the 

bank. 

5.2 Net exposure and default risk 

We now turn to test Proposition 2 in our toy model. It predicts that higher net exposure increases profit 

volatility and default risk. To test this prediction, we examine the relation between a bank’s pre-crisis net 

systemic exposure, its components (exposure and contribution) and its default risk during the crisis. We 

test this hypothesis with the following cross-section model at the bank level: 

yi,crisis = β1Systemic risk i,pre + β2Xi,pre + �i, (26) 

where yi,crisis is a measure of default risk measured in the crisis period, proxied by distance to default, the 

Log(Z-Score), and a dummy variable indicating whether the bank faced insolvency risk during that time. 

Systemic risk i,pre is a bank’s systemic risk exposure, systemic risk contribution, or its systemic net exposure 

(the difference between the two). Xi,pre is a set of bank controls. All systemic risk measures and controls 

reflect the pre-crisis period. As bank controls, we include a bank’s log assets as an indicator of size, deposits 

over total assets as a proxy for the funding structure, non-interest income over total income and loans over 

total assets to proxy for the bank business model, and loan loss provisions over total loans as indicator 

of lending quality and asset growth. This follows the literature exploring the relationship between bank 

characteristics and bank stability (see, e.g., Beck et al., 2013). Furthermore, since banks’ insolvency during 
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the crisis was affected by government interventions, we also control for whether the bank received TARP aid 

by including a dummy variable flagging such banks. 

The results of these models are shown in Table 7. We examine the relationship between a bank’s pre-crisis 

systemic risk exposure and its crisis default risk in the first three columns of this table. All three models 

show no significant relationship between systemic risk exposure and insolvency risk. This result is in line 

with the previous literature, which has documented mixed results about the relationship between pre-crisis 

systemic exposure and bank performance during the crisis (see, e.g., Acharya et al., 2017; Fahlenbrach et 

al., 2012). We then examine the relationship between a bank’s systemic contribution and default risk. In 

these models, the coefficients for distance to default and the Z-Score enter with a positive sign, but only 

the Z-Score is significant. This evidence is again in line with the previous literature, which finds a mixed or 

an insignificant relationship between a bank’s pre-crisis contribution CoVaR and its performance during the 

crisis (Sedunov, 2016). The model in column (6), which studies the probability of failure, shows a negative 

and significant marginal effect indicating that a higher systemic risk contribution before the crisis reduces 

the probability of default in the crisis period. This might be the result of some banks undertaking activities 

with a better risk-return trade-off, but a higher systemic risk contribution, such as traditional activities. 

We allow for the possibility that both measures may be correlated and, at the same time, affect bank 

soundness independently. Hence, we include exposure and contribution measures together in the next three 

columns, (7) to (9). The results remain similar to those in previous regressions. Systemic exposure enters 

with an insignificant coefficient in all three models, and systemic contribution coefficients suggest a pos-

itive relationship with bank soundness in the Z-Score and insolvency models. However, the coefficient is 

insignificant in the distance to default model. 

Finally, we investigate the net systemic risk exposure in the last three columns of this table in accordance 

with the model predictions. According to the model, a bank’s net difference E − C is positively related to 

default risk. Thus, we test whether the variation in this net difference affects bank stability. Results 
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confirm this is the case; the net systemic risk measure now enters significantly in all three regression models, 

confirming our toy model predictions. Furthermore, the adjusted R-squared in the distance to default and 

Z-Score models in columns (10) and (11) (not reported) are higher when the net measure, rather than 

both measures independently, are included in columns (7) and (8) (0.07 versus 0.06 and 0.23 versus 0.20, 

respectively), suggesting net measure variation better predicts default risk. Both the distance to default 

and the Z-Score models display a negative and significant coefficient, and the insolvency probability model 

shows a positive and significant marginal effect. This evidence suggests higher systemic net exposure pre-

crisis is related to higher default risk in the crisis period. The coefficients in these models indicate economic 

significance. One standard deviation increase in the net exposure (0.007) reduces a bank’s distance to default 

by 0.11 standard deviations, the Log(Z-Score) by 0.34 standard deviations, and increases the probability of 

default by 3 percentage points. Among the control variables, we find that larger banks (as measured pre-

crisis) experienced higher insolvency risk during the crisis.23 Banks with higher non-interest income as a 

share of total income in the pre-crisis period had lower default risk in the crisis, which could be explained 

by their higher diversification towards non-traditional activities with less volatile income streams, such as 

fiduciary and securitization activities (Chen et al., 2017; Stiroh and Rumble, 2006). Finally, receiving TARP 

aid is related to lower default risk during the crisis, as measured by the Z-Score and the insolvency dummy, 

consistent with Berger et al. (2020), but related to higher default risk when measured by distance to default. 

This latter result could be explained by the market’s negative expectations regarding these banks. 

The results in Table 7 confirm our hypothesis and suggest that it is not high systemic exposures or 

high contributions alone that increase banks’ default risk, but rather, it is the net systemic risk exposure 

that matters. Moreover, it is important to note this measure independently relates to a bank’s default 

risk when controlling for other bank covariates, as suggested by its robust and significant coefficient. This 

evidence indicates that net exposure better captures a bank’s overall risk-return profile caused by its business 

23This has also been documented in e.g., Fahlenbrach et al. (2012). 
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activities. As in Figure 3, banks with both high exposure and high contribution pre-crisis were not the ones 

that experienced heightened default risk during the crisis; the riskiest banks were those with the largest 

systemic risk asymmetry. This strongly suggests that not just systemic risk, but also its directionality 

matter for financial stability. To our knowledge, this paper is the first to demonstrate this result. Thus, high 

systemic exposure alone may not be detrimental for individual bank stability if also accompanied by high 

systemic contribution. This confirms that high-contribution banks might engage in activities that mitigate 

individual default risk. 

We confirm our results with a couple of additional tests. First, we run an instrumental variable model to 

address potential endogeneity concerns. In our baseline regressions, we lag net systemic risk measures, which 

reduces reverse causality concerns. However, unobserved confounding factors affecting both systemic risk in 

the pre-crisis period and default risk during the crisis could still bias our results. To address this concern, 

we instrument for Net ΔCoVaR in a series of instrumental variable regressions. The instrument is a dummy 

variable indicating whether the bank is located in a reserve city as established by the National Banking 

Acts (NBAs) of 1863 and 1864. The NBAs designated specific reserve cities where all country banks had to 

deposit their reserve requirements.24 Anderson et al. (2019) show the NBAs changed the banking network 

structure, transforming these cities (and their banks) into important nodes. We argue these cities have 

remained important nodes in the banking network, and banks in these cities display higher net exposures, 

as they are more exposed to shocks from the rest of the banking system. At the same time, the NBAs 

established these cities more than 140 years before the 2008 crisis. Thus, the characteristics that influenced 

this decision are unlikely to correlate with bank-level soundness during the crisis. Moreover, any threat to 

instrument exogeneity would need to coincide in these 18 cities to invalidate our instrument. A threat that 

satisfies this criterion is unlikely to exist. 

We present the results of these models in Panel A of Table 8. The first stage of these models shown in 

24These reserve cities were: Albany, Baltimore, Boston, Chicago, Cincinnati, Cleveland, Detroit, Leavenworth, Louisville, 
Milwaukee, New Orleans, New York City, Philadelphia, Pittsburgh, Providence, San Francisco, St. Louis, and Washington. 
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columns (1), (3), and (5) show a positive and significant relationship between the reserve city dummy and 

net exposure, confirming banks in these cities display higher net exposure to systemic risk. The F-statistics 

in these models are close to 10, which suggests the instrument is relevant.25 The second stage of these models 

presented in columns (2), (4), and (6) confirm our previous results. The coefficients in the distance to default 

and the Z-Score models remain statistically significant and are larger in absolute terms, which suggests the 

presence of bias in the previous OLS estimation. The estimate for the insolvency model displays a positive 

coefficient and is marginally significant (p-value 11%). Hence, higher net exposure before the crisis increases 

default risk during the crisis. 

Second, we confirm our findings using two alternative net systemic risk exposure measures: the net tail 

beta (after van Oordt and Zhou, 2019a) and the net marginal expected shortfall (after Acharya et al., 2017), 

computed as described in section 4.1. The results in Panel B of Table 8 confirm the findings obtained from 

the CoVaR, showing negative and significant coefficients for distance to default, and positive and significant 

marginal effects for the failure model for the net exposure as measured by net tail beta and net MES. The 

coefficient for the Z-Score is not significant in either model. This evidence suggests that insolvency risk 

during the crisis increased with net pre-crisis exposure. 

5.3 Systemic risk components and default risk 

Next, we examine which component of net exposure drives default risk – the net shock or the net transmission 

factor. The net shock is the difference between the losses transmitted to the bank when the system is in 

distress and the losses to be transmitted to the system when the bank is in distress. It is defined as 

(V aRq
s − V aRs − V aRi 

50) − (V aRi 
50), from equations (21) and (20). The net transmission is the differenceq 

between the fraction of the simulated shock transmitted from the system to the bank (βE ) and the fraction 

transmitted from the bank to the system (βC ). Thus, we define net transmission as βE − βC = Net βi.i i 

25Because the F-statistics are slightly smaller than 10, we confirm our results using the Anderson Rubin Wald test, which 
allows for robust inference in the case of weak instruments. Overall, the results suggest we can reject the null that the net 
systemic risk coefficients are equal to zero in these models. 
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The results of this study are shown in Table 9. Columns (1) to (3) in this table show the effect of the 

net transmission factor (Net β), and columns (4) to (6) show the effects of the net shock. Since these two 

components could be correlated (banks with higher net losses might also display a larger net transmission 

factor), we include both components together in columns (7) to (9). This table suggests the effect is driven 

by the transmission component, as shown by the positive and significant relationship between the net β 

and all the three insolvency measures in the first three columns of this table. The evidence in these models 

then suggests a higher net fraction transmitted from the system to the bank pre-crisis is related to increased 

insolvency risk during the crisis period. Thus, banks face higher insolvency risk when the fraction of shock 

transmitted in the system-to-bank direction is larger than the fraction of shock transmitted in the bank-to-

system direction. In contrast, the results for the shock component suggest a negative and significant relation 

with insolvency risk, as shown by the next three columns in this table. 

These results remain unchanged when including both risk components in the default risk models in 

columns (7) to (9). The net β is significant and positively related, and the net losses are negatively related 

to insolvency risk. The effect is also economically relevant. Taking the coefficients in the last three columns 

of this table, a one standard deviation increase in the net β (0.24) decreases a bank’s distance to default and 

the Log(Z-Score) by 0.17 and 0.31 standard deviations, respectively, and increases the probability of failure 

by 2 percentage points. 

The results in the previous tables do not answer the question through which channel net systemic exposure 

increases bank default risk. Banks can become riskier in two non-mutually exclusive dimensions: (1) by taking 

riskier activities or reducing risk management, thus increasing the variance of returns, or (2) by increasing 

leverage or taking up less profitable activities, thus reducing the buffer to avoid default. Our model suggests 

net systemic risk increases default risk though the first channel. We investigate these dimensions in Table 

10 and study the numerator and the denominator of the Z-Score separately.26 We split the Z-score into the 

26We focus on the Z-Score for this study since our sample is reduced when calculating distance to default. 

34 

https://separately.26


capital equity ratio plus ROA (numerator) and the standard deviation of ROA over the relevant period (the 

denominator). The evidence in this table confirms the net transmission effect operates through increasing 

the volatility of profits, rather than by reducing leverage or profit levels (columns (1) and (2)). Further 

disaggregating profits into interest income and non-interest income, columns (3) and (4) show that the main 

channel through which net systemic exposure affects default risk is the volatility of non-interest income, 

and of derivatives trading income in particular (column 5). Other sources of non-interest income, such as 

securitization or fiduciary income, do not enter the model with significant coefficients (columns (6) and (7)). 

We interpret this as banks undertaking trading activities pre-crisis that increased their net linkages to the 

system (net betas). Once the crisis began, volatility in financial markets increased significantly, resulting 

in more volatile trading income, and therefore lower Z-scores for high net exposure banks. These results 

confirm the default risk mechanism predicted in Proposition 2 of the toy model. Hence, Table 10 shows a 

positive relationship between net betas and the volatility of profits, and a negative relationship between net 

betas and Z-scores, reinforcing the view that non-interest income activities can be a source of increased risk 

(Stiroh, 2004; Demirgüç-Kunt and Huizinga, 2010). 

Taken together, the evidence in this paper suggests high-net exposure banks engaged in activities that 

increased systemic exposure, such as derivatives trading, leaving banks exposed to the soundness of other 

counterparties. With the extensive involvement in these activities, banks suffered from increased income 

volatility during the crisis, increasing default risk. Trading activities were carried out at the cost of performing 

other activities that would have increased banks’ systemic contribution but would have also contained default 

risk, such as traditional lending activities. 

Conclusion 

The regulatory treatment of large banks poses unique challenges to regulators. Existing regulatory regimes, 

such as the Dodd-Frank Act of 2012 and the Basel III framework, have focused on reinforcing the capital 
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buffers of large banks to improve systemic stability through reducing these banks’ default risk and their 

impact on the rest of the system. The apparent intention behind these regulations is to shield the system 

from the “too big to fail” banks by making them more resilient. 

In contrast to the philosophy behind these regulations, we extensively document that the largest US 

bank holding companies are consistently more vulnerable to shocks originating from the rest of the banking 

system than vice versa. To understand the underpinnings of this phenomenon, we examine the determinants 

of a bank’s net exposure to the financial system (its exposure net of its impact) first theoretically and then 

empirically. We discover theoretically that optimally diversified banks undertake trading activities which 

increase their net exposure and default risk, and we confirm the prediction empirically. In addition to 

derivatives trading, we also find that bank size and involvement in CDS markets also increase a bank’s net 

exposure. The analysis suggests that the effect of size, trading activities, and the use of credit default swaps 

on net exposure is due to their impact on the net transmission factor, increasing the net fraction of losses 

transmitted in the system-to-bank direction. Overall, the evidence shows that high-net exposure banks 

engaged in activities that increased the transmission of adverse shocks to the banks, such as derivatives 

trading, which exposed banks to the healthiness of other bank counterparties. With an extensive portfolio 

invested in derivatives, banks suffered increased income volatility during the crisis, increasing default risk. 

Banks carried out these activities at the cost of not investing in other assets that would have increased their 

contribution but also contained default risk, such as traditional lending activities. 

Moreover, we show that the larger this asymmetry, i.e., the more exposed a large bank is to the system 

relative to its impact on it, the riskier it becomes. Examining the channels behind this relation, we find that 

the effect on bank default risk is driven by the net transmission factor of shocks rather than the size of net 

shocks, and that the link between this factor and insolvency risk runs through activities such as trading, 

increasing the volatility of profits. 

Our findings offer two important policy implications. First, interconnectedness in the financial system 
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can be directional, and bank regulation will increasingly need to reflect this to stay ahead of future risks to 

systemic stability. It might be beneficial for regulation to focus on containing and imposing buffers on high 

net exposure banks, rather than just large banks or banks displaying a high systemic contribution. Second, 

default risk increases with the net system-to-bank shock transmission factor, which in turn is positively 

related to bank size and the use of credit derivatives. An efficient regulation should therefore focus first 

on reducing such net exposures, rather than subsequently buffering the default risks arising from them. 

Therefore, regulators should put their efforts on containing banks’ size, and monitoring banks’ connections 

through the CDS market. Such regulation would help address more efficiently not only the challenges of size 

and complexity, but also of directional interconnectedness making some banks more vulnerable than others. 
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7 Figures 

Figure 1. Evolution of banks’ average systemic risk exposure and contribution 
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The figure shows the evolution of banks’ average systemic risk exposure and contribution as 
measured by Adrian and Brunnermeier’s (2016) Exposure ΔCoVaR and ΔCoVaR metrics, 
respectively. The graph displays the cross-sectional average across the top 200 US bank holding 
companies by assets as measured at Q4:2006. The time frame shown is from Q1:2004 to 
Q4:2012. 
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Figure 2. Banks’ net exposure and size 
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The figure shows a plot of the systemic risk exposures versus systemic risk contributions for two sets of banks, as measured by Adrian and 
Brunnermeier’s (2016) Exposure ΔCoVaR and ΔCoVaR metrics. Panel A shows the 20 smallest banks in the sample, and Panel B – the 20 
largest banks. Banks with an Insolvency dummy equal to 1 are flagged in red. The full sample consists of the 200 top US bank holding 
companies by assets as measured at Q4:2006. 

Figure 3. Banks’ net exposure and risk 
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The figure shows a plot of the systemic risk exposures versus systemic risk contributions for two sets of banks, as measured by Adrian and 
Brunnermeier’s (2016) Exposure ΔCoVaR and ΔCoVaR metrics. Panel A shows the 20 safest banks in the sample, and Panel B, the 20 
riskiest banks, as ranked by their distance to default (DD). Banks with an Insolvency dummy equal to 1 are flagged in red. The full sample 
consists of the 200 top US bank holding companies by assets as measured at Q4:2006. 
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8 Tables 

Table 1: Selected Summary Statistics by Net ΔCoVaR Exposure and Period 

Pre-Crisis Crisis 

Above-median Below-Median Above-median Below-Median 

Mean Std. Dev. Mean Std. Dev. Std. Diff Mean Std. Dev. Mean Std. Dev. Std. Diff 

Net ΔCoVaR 0.007 0.005 -0.004 0.003 2.492*** 0.031 0.017 0.004 0.006 2.168*** 

Log(Z-Score) 3.416 0.380 3.400 0.354 0.045 2.809 0.908 3.292 0.702 -0.596*** 

DD 8.07 2.222 7.842 2.900 0.088 2.583 1.115 3.217 1.917 -0.404*** 

Log(assets) 15.470 1.919 14.950 0.894 0.351*** 15.500 1.768 15.200 1.201 0.196* 

Fiduciary/TI .020 .0416 .0243 .0356 -0.117 .0195 .041 .025 .037 -0.150 

Securitization/TI 0.001 0.005 0.0004 0.003 0.165 .0195 .041 .025 .037 -0.150 

Trading/TI 0.005 0.015 0.001 0.004 0.390*** 0.003 0.014 0.001 0.005 0.210* 

LLP/TL 0.0014 0.0015 0.0009 0.0007 0.429*** 0.0083 0.0064 0.0047 0.0046 0.653*** 

ROA 0.0061 0.0021 0.0058 0.0022 0.122 0.0009 0.0075 0.0047 0.0061 -0.569*** 

Leverage 0.904 0.021 0.912 0.019 -0.379*** 0.908 0.018 0.910 0.019 -0.083 

Deposits/TL 0.826 0.102 0.836 0.070 -0.107 0.801 0.104 0.804 0.074 -0.033 

Loans/TA 0.713 0.119 0.681 0.099 0.294** 0.731 0.113 0.698 0.095 0.318** 

RE/TL 0.736 0.159 0.715 0.129 0.145 0.741 0.154 0.714 0.136 0.186* 

C&I/TL 0.163 0.095 0.168 0.097 -0.062 0.163 0.093 0.174 0.099 -0.111 

HH/TL 0.053 0.067 0.077 0.068 -0.346*** 0.050 0.063 0.070 0.069 -0.297** 

GrossCDS/TA 0.002 0.009 0 0 0.398 0.002 0.008 0.001 0.004 0.240** 

NetCDS/TA 0.0002 0.001 0 0 0.442*** 1.28e-04 4.86e-04 4.32e-04 2.90e-04 0.213* 

MBSheld/TA 0.003 0.009 0.012 0.033 -0.399*** 0.004 0.013 0.008 0.027 -0.223* 

Summary statistics for banks with different Net ΔCoVaR exposures over two time periods. The table displays covariate means and standard 

deviations for banks with above-median and below-median Net CoVaR exposures before and during the crisis. The left panel shows statistics 

for the pre-crisis period (2006:Q1-2007:Q2), and the right panel – for the crisis period (2007:Q3-2008:Q4). The normalized differences in means 

are also displayed, with asterisks (*) showing the significance level of the one-sided t-test for the corresponding non-normalized difference. 

Definitions and sources of control variables are listed in Internet Appendix B. 
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Table 2: Descriptive Statistics 

N mean sd p25 p50 p75 N mean sd p25 p50 p75 

Pre-crisis period Crisis period 

ΔCoVaRE 200 0.013 0.008 0.010 0.013 0.017 200 0.044 0.027 0.034 0.044 0.057 

ΔCoVaRC 200 0.012 0.007 0.007 0.014 0.018 200 0.027 0.016 0.013 0.028 0.037 

Net ΔCoVaR 200 0.001 0.007 -0.003 -0.000 0.006 200 0.018 0.013 0.009 0.017 0.027 

βE 200 0.537 0.326 0.405 0.534 0.689 200 0.537 0.326 0.405 0.534 0.689 

βC 200 0.336 0.209 0.176 0.344 0.487 200 0.336 0.209 0.176 0.344 0.487 

Net β CoVaR 200 0.210 0.243 0.044 0.186 0.377 200 0.210 0.243 0.044 0.186 0.377 

ShockE 200 0.025 0.000 0.025 0.025 0.025 200 0.083 0.003 0.083 0.083 0.083 

ShockC 200 0.050 0.038 0.034 0.040 0.046 200 0.093 0.041 0.070 0.081 0.105 

Net shock CoVaR 200 -0.025 0.036 -0.022 -0.015 -0.009 200 -0.013 0.044 -0.022 0.002 0.013 

Log(βE 
T ) 172 0.332 0.522 0.111 0.507 0.634 176 0.221 0.379 0.129 0.327 0.443 

Log(βC 
T ) 172 -1.274 0.376 -1.502 -1.268 -1.052 176 -1.081 0.323 -1.262 -1.051 -0.858 

Net Log(βT ) 172 1.611 0.607 1.224 1.738 2.040 176 1.305 0.427 1.031 1.299 1.581 

MESE 197 0.012 0.007 0.009 0.013 0.016 199 0.043 0.022 0.031 0.047 0.056 

MESC 198 0.006 0.004 0.004 0.008 0.009 199 0.039 0.022 0.027 0.043 0.055 

Net MES 197 0.005 0.005 0.003 0.005 0.008 199 0.004 0.013 -0.004 0.002 0.011 

DD 190 7.956 2.579 5.965 7.532 9.235 190 2.890 1.584 2.174 2.590 3.128 

Log(Z-Score) 200 3.408 0.366 3.184 3.352 3.585 199 3.052 0.845 2.708 3.324 3.588 

Log(ROA+Equity/TA) 200 -2.349 0.211 -2.490 -2.350 -2.229 200 -2.396 0.235 -2.520 -2.382 -2.224 

Log(SD(ROA)) 200 -5.756 0.376 -5.915 -5.709 -5.499 199 -5.450 0.749 -5.924 -5.672 -5.203 

Log(SD(Interest)) 200 -4.693 0.215 -4.831 -4.692 -4.548 199 -4.597 0.202 -4.699 -4.602 -4.473 

Log(SD(Non-interest)) 200 -5.480 0.416 -5.637 -5.412 -5.219 199 -5.197 0.492 -5.426 -5.227 -4.961 

Log(SD(Trading)) 200 0.00007 0.0002 0 0 0 199 0.0001 0.0003 0 0 0.00002 

Log(SD(Securitization)) 200 0.00002 0.0001 0 0 0 199 0.00002 0.00009 0 0 0 

Log(SD(Fiduciary)) 200 0.0005 0.0008 0 0.0002 0.0006 199 0.0005 0.0009 0 0.0003 0.0006 

Insolvency 200 0.110 0.314 0 0 0 

Log(Assets) 200 15.210 1.516 14.113 14.714 15.682 200 15.352 1.515 14.281 14.861 15.874 

Deposits/TA 200 0.754 0.079 0.709 0.771 0.812 200 0.728 0.081 0.682 0.742 0.785 

Non-IntInc/TI 200 0.167 0.094 0.105 0.154 0.215 200 0.167 0.092 0.109 0.155 0.222 

Fiduciary/TI 200 0.022 0.039 0 0.010 0.029 200 0.022 0.039 0 0.011 0.029 

Securitization/TI 200 0.001 0.004 0 0 0 200 0.001 0.003 0 0 0 

Trading/TI 200 0.003 0.011 0 0 0 200 0.002 0.011 0 0 0 

Loans/TA 200 0.697 0.110 0.656 0.714 0.767 200 0.714 0.105 0.670 0.731 0.782 

LLP/TL 200 0.001 0.001 0.001 0.001 0.001 200 0.007 0.006 0.003 0.004 0.008 

Asset growth 200 0.025 0.026 0.009 0.021 0.035 200 0.023 0.024 0.008 0.021 0.036 

TARP 200 0.425 0.496 0 0 1 

ROA 200 0.006 0.002 0.005 0.006 0.007 200 0.003 0.007 0.001 0.005 0.007 

Leverage 200 0.908 0.020 0.898 0.911 0.922 200 0.909 0.019 0.895 0.911 0.921 

Deposits/TL 200 0.831 0.087 0.787 0.853 0.892 200 0.802 0.090 0.754 0.816 0.867 

RE/TL 200 0.726 0.145 0.647 0.747 0.818 200 0.727 0.145 0.640 0.747 0.832 

C&I/TL 200 0.165 0.096 0.099 0.158 0.215 200 0.168 0.096 0.097 0.155 0.221 

HH/TL 200 0.065 0.068 0.014 0.041 0.094 200 0.060 0.067 0.012 0.033 0.079 

GrossCDS/TA 200 0.001 0.006 0 0 0 200 0.001 0.006 0 0 0 

NetCDS/TA 200 0.00008 0.0004 0 0 0 200 0.00009 0.0004 0 0 0 

MBSheld/TA 200 0.008 0.025 0 0 0 200 0.006 0.022 0 0 0 

This table reports summary statistics of the main regression variables. The statistics are based on averaged data for 

the pre-crisis and crisis periods. The pre-crisis period spans from Q1:2006 to Q2:2007, and the crisis period spans from 

Q3:2007 to Q4:2008. Definitions and sources of variables are listed in Internet Appendix B. 
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Table 3: Correlations of Systemic Risk Metrics 

Panel A: Exposure measures 

ΔCoVaRE Log(βT
E ) MESE 

ΔCoVaRE 1 

Log(βT
E ) 0.04 1 

MESE 0.55 0.30 1 

Panel B: Contribution measures 

ΔCoVaRC Log(βT
C ) MESC 

ΔCoVaRC 1 

Log(βT
C ) 0.47 1 

MESC 0.59 0.33 1 

Panel C: Net exposure measures 

Net ΔCoVaR Net Log(βT ) Net MES 

Net ΔCoVaR 1 

Net Log(βT ) 0.07 1 

Net MES 0.28 0.38 1 

This table reports correlations between the systemic risk variables. The 

statistics are based on quarterly data for the pre-crisis period which spans 

from Q1:2006 to Q2:2007. Definitions and sources of variables are listed in 

Internet Appendix B. 
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Table 4: BHCs Ranked According to Net CoVaR Exposure (Pre-Crisis) 
Name Total Assets Net CoVaR exposure 

1 SILVER STATE BANCORP 1,180 0.02365 

2 RELIANCE BANCSHARES, INC. 869 0.02024 

3 UCBH HOLDINGS, INC. 9,322 0.02015 

4 CORUS BANKSHARES, INC. 9,688 0.01932 

CAPITAL CORP OF THE WEST 1,870 0.01879 

6 BANNER CORPORATION 3,551 0.01600 

7 BANK OF AMERICA CORPORATION 1,464,009 0.01575 

8 CENTRAL PACIFIC FINANCIAL CORP. 5,413 0.01523 

9 SECURITY BANK CORPORATION 2,320 0.01432 

UNITED COMMUNITY BANKS, INC. 6,872 0.01409 

11 CITIGROUP INC. 1,847,525 0.01409 

12 WACHOVIA CORPORATION 631,471 0.01314 

13 FIFTH THIRD BANCORP 103,144 0.01267 

14 SVB FINANCIAL GROUP 5,700 0.01227 

HUNTINGTON BANCSHARES INCORPORATED 35,739 0.01158 

16 PAB BANKSHARES, INC. 1,113 0.01110 

17 OLD SECOND BANCORP, INC. 2,443 0.01105 

18 MARSHALL & ILSLEY CORPORATION 54,781 0.01087 

19 HORIZON FINANCIAL CORP. 1,228 0.01067 

MBT FINANCIAL CORP. 1,572 0.01061 

21 WESTERN ALLIANCE BANCORPORATION 4,186 0.01058 

22 ZIONS BANCORPORATION 46,411 0.01057 

23 PORTER BANCORP, INC. 1,061 0.01055 

24 FNB CORP. 1,713 0.01050 

CASCADE BANCORP 2,107 0.01008 

26 REGIONS FINANCIAL CORPORATION 112,784 0.00976 

27 INDEPENDENT BANK CORPORATION 3,395 0.00965 

28 WELLS FARGO & COMPANY 497,191 0.00924 

29 FIDELITY SOUTHERN CORPORATION 1,565 0.00913 

DEARBORN BANCORP, INC. 876 0.00890 

31 BANCTRUST FINANCIAL GROUP, INC. 1,350 0.00838 

32 STATE STREET CORPORATION 108,156 0.00815 

33 INTERVEST BANCSHARES CORPORATION 1,936 0.00809 

34 PRINCETON NATIONAL BANCORP, INC. 992 0.00802 

IRWIN FINANCIAL CORPORATION 6,291 0.00800 

36 NEXITY FINANCIAL CORPORATION 864 0.00798 

37 SUNTRUST BANKS, INC. 181,998 0.00797 

38 EAST WEST BANCORP, INC. 10,405 0.00789 

39 CENTERSTATE BANKS OF FLORIDA, INC. 1,077 0.00773 

HERITAGE COMMERCE CORP 1,122 0.00772 

41 BEVERLY HILLS BANCORP INC. 1,535 0.00707 

42 GREENE COUNTY BANCSHARES, INC. 1,921 0.00701 

43 U.S. BANCORP 217,230 0.00697 

44 TEMECULA VALLEY BANCORP INC. 1,159 0.00694 

KEYCORP 93,660 0.00675 

46 BOSTON PRIVATE FINANCIAL HOLDINGS, INC. 5,595 0.00670 

47 WEST COAST BANCORP 2,372 0.00633 

48 SYNOVUS FINANCIAL CORP. 31,502 0.00630 

49 PINNACLE FINANCIAL PARTNERS, INC. 2,091 0.00587 

MACATAWA BANK CORPORATION 2,043 0.00581 

This table shows the 50 US banks with highest net CoVaR exposure in our sample, ranked in descending 

order as of the pre-crisis period (Q1:2006-Q2:2007). Average assets are shown in millions of US dollars. 
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Table 8: Additional Tests 

Panel A: Instrumental Variables 

(1) (2) (3) (4) (5) (6) 

DD Log(Z-Score) Insolvency 

1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage 

Reserve city 0.004*** 0.005*** 0.004** 

(0.0017) (0.0015) (0.0015) 

Net Δ CoVaRt−1 -103.6** -95.67* 32.63 

(45.88) (54.81) (20.72) 

F - test 6.33 9.01 8.10 

Controls Y Y Y Y Y Y 

Observations 190 190 199 199 200 200 

R-squared 0.023 0.11 0.02 

Panel B: Alternative Net Systemic Risk Measures 

(1) (2) (3) (4) (5) (6) 

DD Log(Z-Score) Insolvency DD Log(Z-Score) Insolvency 

Net Log(βT )t−1 -0.370** 0.0323 0.107*** 

(0.182) (0.106) (0.0406) 

Net MESt−1 -80.73*** -6.867 11.68*** 

(27.09) (12.73) (4.057) 

Controls Y Y Y Y Y Y 

Observations 165 171 172 188 196 197 

(Pseudo) R-squared 0.18 0.22 0.39 0.18 0.20 0.42 

This table presents the results of cross-section regressions of default risk indicators on systemic risk measures. Panel A shows the results of IV 

regressions using as an instrument the dummy variable Reserve city, which indicates whether the bank is located in a reserve city as defined by 

the National Banking Acts of 1863–1864. Panel B shows the results of default risk models using as alternative net systemic risk measures the Net 

Log(βT ) that corresponds to the difference between log(βE ) and log(βC ), and the Net MES that corresponds to the difference between MESE andT T 

MESC . Columns (1) and (4) report marginal effects. All regressions contain the sample of the 200 largest banks in Q4:2006. The data is averaged 

within each period (pre-crisis and crisis), where the pre-crisis period spans from Q1:2006 to Q2:2007, and the crisis period spans from Q3:2007 to 

Q4:2008. Definitions and sources of control variables are listed in Internet Appendix B. All models are estimated using robust standard errors (in 

parentheses). ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 
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Internet Appendix 

A Model Proofs 

Proof of Lemma 1. Consider two correlated Bernoulli variables X and Z, where X is 0 with probability 

p and Z is 0 with probability q, and observe that the risky asset Y is simply the transformation Y = RZ. 

Therefore, Cov(X, Y ) = Cov(X, RZ) = RCov(X, Z). Next, recall that 

E(XZ) = EXEZ + Cov(X, Z) (27) 

and observe that EX = 1 − p and EZ = 1 − q. Therefore, the probability of joint success p1 from Matrix 1 

equals 

p1 = (1 − p)(1 − q) + Cov(X, Z) = (1 − p)(1 − q) + R−1Cov(X, Y ). (28) 

Knowing this we set up the equation system 

p1 = (1 − p)(1 − q) + R−1Cov(X, Y ) (29) 

p1 + p2 = 1 − p (30) 

p1 + p3 = 1 − q (31) X 
pi = 1 (32) 

i 

which produces the solution 

p1 = 1 − p − q + pq + R−1Cov(X, Y ) (33) 

p2 = q(1 − p) − R−1Cov(X, Y ) (34) 

p3 = p(1 − q) − R−1Cov(X, Y ) (35) 

p4 = pq + R−1Cov(X, Y ). (36) 
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as claimed. � 
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∂C ∂E Proof of Proposition 1. We will show that, at the optimal α∗ , (α∗) > 0 and (α∗) < 0. Recall∂α ∂α 

from the definition of contribution (11) and exposure (12) that 

∂C dEπ dE(πsys|si) dE(πsys|si) 
= (α ∗ ) − (α ∗ ) = − (α ∗ ) (37)

∂α dα dα dα 
∂E dEπ dE(πi | Y = 0) dE(πi | Y = 0) 

= (α ∗ ) − (α ∗ ) = − (α ∗ ), (38)
∂α dα dα dα 

since the profit derivative is zero at the maximizer α∗ . Hence, we need to focus on the above derivatives of 

conditional profits. 

Effect of trading on Contribution. The expected profits conditional on a negative shock are 

Z 
p2(1 − α) + p3αR + p4 · 0E(πsys|si) = Eπj dj = − 1 + 2α − 2α2 , (39) 

[0,1]\{i} 1 − p1 

This conditional profit is maximized when 

∂E(π | si) p2 p3 
= − + R + 2 − 4α = 0 (40)

∂α 1 − p1 1 − p1 

whose maximizer is the root α0 defined as 

� � 
1 1 p3R − p2

α0 = + (41)
2 4 1 − p1 

To find whether trading increases or reduces contribution near the optimum α∗ , we must evaluate the sign of 

∂E(π|si) 27the derivative at α∗ . Since the conditional profit function is concave, it increases forwe know that∂α 

α < α0 and decreases for α > α0. Thus, we must find whether α∗ is greater or smaller than α0. If α∗ < α0, 

then trading increases conditional expected profit, thereby reducing contribution C. 

We next verify under what conditions α∗ < α0. Substituting the values of α∗ and α0, we get 

p3R − p2
(p1 + p3)R − p1 − p2 < . (42)

1 − p1 

27This is easily provable by taking the second derivative of the function (39). 
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This simplifies down to 

R(1 − p1 − p3) < 1 − p1 + p2. 

Substituting the definitions of pi in terms of p and q, this inequality reduces down to 

(43) 

Rq + p < 2[1 − q(1 − p) + R−1Cov(X, Y )], (44) 

or equivalently, to the quadratic inequality in R ⎞⎛ ⎜⎜⎝ 
⎟⎟⎠R + 2p < 0. (45)

2[1 − q(1 − p)] − p
R2 − {zq 

κ 
}| 

p
κ2 − 2p, where κ is the expression defined by the horizontal braceThis expression has two roots, R = κ ± 

above. The inequality holds for any R between these two roots. Since the smaller root is easily shown to p
κ2 − 2p. However, this upper be less than 1, while R > 1 is required, the binding condition is R < κ + 

bound is so large that it likely does not matter in practice. For example, for p = 0.05 and q = 0.10, the p
κ2 − 2p > 35; thus, the return R of the risky asset has to exceed the return of the safeupper bound κ + 

asset by a factor of 35 for this condition to start to matter. Nonetheless, for completeness we list this as a 

required condition. 

As a result, we can conclude that ∂E(π|si) ∂α |α∗ > 0, whenever 1 < R < κ + 
p
κ2 − 2p. Hence, according to 

equation (42), ∂C/∂α < 0 at and near α∗ . (The “near” part follows since any continuous function preserves 

its sign in a sufficiently small neighborhood of a point at which the function’s value is non-zero.) Hence, 

trading reduces contribution C when the upper bound condition on R is met. 

Effect of trading on Exposure. The expected profits conditional on a trading shock are 

E(π | Y 
p2(1 − α) + p4 · 0 

= 0) = 
(1 − p1 − p3) 

− 1 + 2α − 2α2 

(46) 

= 
p2 
(1 − α) − 1 + 2α − 2α2 

q 
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This concave conditional profit function is maximized when 

∂E(π | Y = 0) p2 
= − + 2 − 4α = 0 (47)

∂α q 

producing the maximizer 

1 p2
α1 = − . (48)

2 4q 

Profits conditional on a trading shock (46) will be decreasing in trading at α∗ if we find that α1 < α∗ , 

because this conditional profit function is concave. Next we verify under what conditions α1 < α∗ . By 

substituting the expressions for the two roots α∗ and α1 in the last inequality and simplifying, we obtain 

the necessary condition 

−p2/q < (1 − q)R − (1 − p) . (49)| {z } | {z } 
EY EX 

∂E(π|Y =0)But this always holds if EY − EX > 0, as already assumed in the model setup. Therefore, |α∗ < 0,∂α 

and by equation (43), ∂E/∂α > 0 at and near the optimal asset mix α∗ . (The “near” part follows since any 

continuous function preserves its sign in a sufficiently small neighborhood of a point at which the function’s 

value is non-zero.) Hence, trading increases exposure E. 

Net exposure is strictly increasing in trading α. Recalling the definitions of exposure and contribution 

from equations (10) and (12), 

E = π ∗ − (1 − α) 
p2 
+ TC(α) (50) 

q 

p2 p3
C = π ∗ − (1 − α) − αR + TC(α), (51)

1 − p1 1 − p1 
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we can express net exposure NE(α) as 

p2 p2 p3
NE = E − C = − (1 − α) + (1 − α) + αR 

q 1 − p1 1 − p1� � 
q − 1 + p1 αp3

=(1 − α)p2 + R 
(1 − p1)q 1 − p1 � � (52) 

1 p2 
= (1 − α) [q − 1 + p1] + αp3R 
1 − p1 q� � 
1 p2p3 

= −(1 − α) + αp3R 
1 − p1 q 

The derivative of net exposure with respect to trading α is 

� � 
∂(E − C) 1 p2p3 

= + p3R > 0 (53)
∂α (1 − p1) q 

which is positive. Hence, net exposure increases with trading α. 

Proof of Proposition 2. (i). Default risk increases with net exposure. 

dV ar(π)We are going to prove that profit variance is increasing in α at the optimal α∗ , i.e., (α∗) > 0, anddα 

use this fact jointly with d(E − C)/dα > 0 to prove that profit variance and default risk are both increasing 

in net exposure E − C. 

The first derivative of the profit variance with respect to α is 

dV ar(π) n o 
= α 2p1(R − 1)(qR − p) + 2p2[R(1 − q) + p] + 2p3R[Rq + (1 − p)] + 

dα (54) 

+2p1[qR − p] − 2p2[R(1 − q) + p] 

and the second derivative is positive 

d2V ar(π) 
= 2p1(R − 1)(qR − p) + 2p2[R(1 − q) + p] + 2p3R[Rq + (1 − p)] > 0 (55)

dα2 

because 

qR − p > 0, R(1 − q) + p > 0, and Rq + (1 − p) > 0 (56) 
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(all of these follow from the assumptions R > 1 and q > p). This demonstrates that the profit variance is 

strictly convex in α, and therefore has a minimum at a variance minimizer αv obtained by setting the first 

derivative (54) equal to zero (we verify αv is not a corner solution below). The question is therefore whether � 
αv < α∗ , in which case α∗ would be on the increasing portion of the V ar π(α) curve as claimed in the 

result. 

The variance minimizer 

p1[qR − p] − p2[R(1 − q) + p]
αv = > 0 (57) 

p1(R − 1)(qR − p) + p2[R(1 − q) + p] + p3R[Rq + 1 − p] 

is clearly positive due to the inequalities in (56), but is smaller than or equal to 1/2, from which it follows 

dV ar(π)that αv < α∗ . Hence, (α∗) > 0. To ascertain this, we verify the inequality αv ≤ 1/2, which (afterdα 

some algebra) reduces down to 

p1(qR − p)[3 − R] − 3p2[R(1 − q) + p] ≤ p3R[Rq + (1 − p)]. (58) 

This is a quadratic inequality in R with a solution of R ∈ [R1, R2], where the roots R1 and R2 (when 

existent) are given by p
γ   γ2 − 12pq(1 − p)(1 − q)

R1,2 = , (59)
2q(1 − q) 

and where γ = 2p(1 − p)(1 − q) + R−1Cov(X, Y )(3 + 4p − p2). 

Since γ contains the covariance term, the inequality’s solution range R ∈ [R1, R2] depends on the 

numerical value of Cov(X, Y ) and cannot be checked analytically for all possible values. (For exam-

ple, for Cov(X, Y ) = 0, the inequality always holds, but for Cov(X, Y ) > 0 the roots also depend on 

p and q). Instead we verify numerically that the inequality (58) holds for the full range of covariances 

−pqR ≤ Cov(X, Y ) ≤ Rp(1 − q) and for a wide set of plausible loss probabilities p < q on the interval 

[0.01, 0.25]. Thus, for the plausible parameter range for the model, it is true that αv < α∗ , and given the 
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� dV ar(π)convexity of V ar π(α) and its continuity, it follows that (α∗) > 0. We use this fact jointly with thedα 

fact d(E − C)/dα > 0 to prove default risk is increasing in net exposure E − C. 

Recall from the previous discussion that net exposure NE(α) ≡ E(α) − C(α) is a differentiable and 

strictly increasing function of α, for which the inverse function α(NE) exists and is also strictly increasing � 
dαin net exposure, i.e. > 0. Now define the nested function V ar π(α(NE)) and observe that, by thed(NE) 

chain rule, the derivative 

dV ar(π) dα dV ar(π) 
= > 0 (60)

dα d(NE) d(NE) 

when evaluated at α∗ . Hence, the profit variance V ar(π) is strictly increasing in net exposure at α∗ . 

Now consider the model Z-Score, 

1 + π(α)
Z − Scoremodel = p . (61) 

V ar(π(α)) 

We will show that the Z-Score is decreasing in net exposure and in α at the optimal α∗ . Observe that 

p 
dV ar(π)

dZ − Scoremodel π0(α∗) V ar(π) − 0.5(1 + π(α∗))V ar−1/2(π) dα= . (62)
dα α∗ V ar(π(α∗)) 

dV ar(π)Since π0(α∗) = 0, V ar(π) ≥ 0, 1 + π(α∗) ≥ 0, and > 0, we have dα 
α∗ 

dZ − Scoremodel 
< 0. (63)

dα α∗ 

At the same time, we also know that dα/d(NE) > 0. Combining these two facts, 

dZ − Scoremodel dα dZ − Scoremodel 
= < 0, (64)

dα d(NE) d(NE) 

therefore the model predicts that higher net exposure reduces the Z-Score and hence increases default risk 

at and near the optimal diversification point α∗ . 

(ii) An increase in Cov(X, Y ) reduces the Z-Score. 
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We are interested in the effect of an increase in Cov(X, Y ) on the model Z-Score. 

p
dZ − Scoremodel [Eπ]0 V ar(π) − 0.5(1 + Eπ)(V ar(π))1/2[V ar(π)]0 

= . (65)
dCov(X, Y ) V ar(π) 

Observe that [Eπ]0 = 0, because differentiating the expected profit 

Eπ =[1 − (p + q) + pq + R−1Cov(X, Y )](1 − α + αR)+ 

+ [q(1 − p) − R−1Cov(X, Y )](1 − α)+ (66) 

+ [p(1 − q) − R−1Cov(X, Y )]αR − TC(α) 

with respect to Cov(X, Y ) yields the derivative 

[Eπ]0 = [1 − α + αR − (1 − α) − αR]R−1 = 0. (67) 

Therefore, from equation (65) it follows that 

� � � � 
dZ − Scoremodel dV ar(π) 

sgn = −sgn , (68)
dCov(X, Y ) dCov(X, Y ) 

which implies that the effect on the model Z-Score operates through the profit variance channel: an increase 

in covariance results in more variable profits, but does not change their average value. 

Since costs are deterministic, the variance of profit is the same as that of total revenue. Therefore, 

V ar(π) = p1[1 + α(R − 1) − TR]2 + p2[(1 − α) − TR]2+ 

+ p3[αR − TR]2 + p4[−TR]2 = (69) 

2 
= −TR + p1(1 + α(R − 1))2 + p2(1 − α)2 + p3(αR)

2 , 

where TR is the mean total revenue. Substituting p1 to p4 from equations (34) to (36) and the mean revenue 
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⎪⎪
⎪⎪

value yields 

V ar(π) = � 
− [1 − (p + q) + pq + R−1Cov(X, Y )](1 + α(R − 1))+ 

� � � � �2 
(1 − α) q(1 − p) − R−1Cov(X, Y ) + αR p(1 − q) − R−1Cov(X, Y ) + (70) 

[1 − (p + q) + pq + R−1Cov(X, Y )][1 + α(R − 1)]2+ 

[q(1 − p) − R−1Cov(X, Y )](1 − α)2 + (αR)2[p(1 − q) − R−1Cov(X, Y )]. 

The derivative of V ar(π), however, simplifies down to the simple expression 

� �dV ar(π) 
= R−1 [(1 − α) + αR]2 − (1 − α)2 − (αR)2 = 

dCov(X, Y ) 
(71) 

= 2α(1 − α), 

which is positive for α ∈ (0, 1) and zero when α = 0 or α = 1. 

Putting everything together, we obtain 

⎧ � � ⎪⎨< 0dZ − Scoremodel 
sgn = −sgn {2α(1 − α)} = 

dCov(X, Y ) ⎪⎩0 
for α ∈ (0, 1) 

for α = 0 or 1. 

(72) 

Hence an increase in covariance reduces bank stability by lowering the bank’s Z-Score for any interior α. This 

implies that, conditional on a crisis (increase in covariance), default risk should increase for diversified banks 

(which feature an interior α∗). Non-diversified banks, by contrast, are not affected by covariance changes, 

because they hold only one asset. 

(iii). Default risk operates through the profit variance channel. 

Substituting α = α∗ in equation (71), we see that at and near the optimal diversification point α∗ , 

dV ar(TR) (α∗) > 0.dCov(X,Y ) 

63 



B Variable Definitions 

Variable Definitions 
Variable Definition Source 

Systemic Risk Measures and Components 
ΔCoVaRC ΔCoVaR as defined in equation (1) Authors’ calculation with 

Bloomberg price data 
ΔCoVaRE Exposure ΔCoVaR defined in equation (2) Authors’ calculation with 

Bloomberg price data 
β CoVaRC Estimated βC from equation (3) Authors’ calculation with 

Bloomberg price data 
β CoVaRE Estimated βE from equation (4) Authors’ calculation with 

Bloomberg price data 
Shock CoVaRC (V aRi 

q − V aRi ) from equation (3) 50 Authors’ calculation with 
Bloomberg price data 

Shock CoVaRE (V aRs 
q − V aRs ) from equation (4) 50 Authors’ calculation with 

Bloomberg price data 
MESE A bank’s average return taken over the days scoring the 5% Authors’ calculation with 

worst daily returns of the S&P Banks Index for each quarter Bloomberg price data 
MESC The banking sector’s S&P Banks Index average return taken Authors’ calculation with 

over the days scoring the 5% worst daily returns of the indi- Bloomberg price data 
vidual bank for each quarter 

βE 
T,i Bank i’s tail exposure to the rest of the system as in van Oordt Authors’ calculation with 

and Zhou (2019a), estimated by EVT Bloomberg price data 
βC 
T,i The system’s tail exposure to bank i obtained by inverting Authors’ calculation with 

the conditioning in van Oordt and Zhou (2019a), estimated Bloomberg price data 
by EVT 

Net Exposure Measures 
Net ΔCoVaR ΔCoVaRE − ΔCoVaRC Authors’ calculation 
Net β CoVaR βE − βC from equations (21) and (20) Authors’ calculation 
Net shock CoVaR Shock CoVaRE − Shock CoVaRC Authors’ calculation 
Net MES MESE − MESC Authors’ calculation 
Net Log(βT ) log(βE ) − log(βC )T T Authors’ calculation 

Individual Risk measures 
Z-Score [ROA + (Total equity capital/Total assets)]/sd(ROA) Authors’ calculation with 

Form FR-Y9C data 
DD Merton distance to default as in Merton (1974) Authors’ calculation with 

Bloomberg price data and 
Form FR-Y9C 

Insolvency A dummy equal to 1 if the bank failed, was acquired due to in- FDIC ED&O database and 
solvency risk, had a direct subsidiary fail, or had a cease-and- FDIC Failed Banks List 
desist order from the FDIC during the crisis up to Q4:2010. 
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Variable Definitions (cont’d) 
Variable Definition Source 

Bank controls 
Log(assets) Logarithm of assets Federal Reserve Form FR-Y9C 
Fiduciary/TI Fiduciary income over total income Federal Reserve Form FR-Y9C 
Securitization/TI Securitization income over total income Federal Reserve Form FR-Y9C 
Trading/TI Trading income over total income Federal Reserve Form FR-Y9C 
Loans/TA Total loans as a fraction of total assets Federal Reserve Form FR-Y9C 
LLP/TL Loan loss provisions over total loans Federal Reserve Form FR-Y9C 
Asset growth Quarterly asset growth Federal Reserve Form FR-Y9C 
TARP Equals 1 if bank received TARP government aid, 0 otherwise. US Dept. of the Treasury 
ROA Net income over assets Federal Reserve Form FR-Y9C 
Leverage Debt over assets Federal Reserve Form FR-Y9C 
Deposits/TL Deposits as fraction of total loans Federal Reserve Form FR-Y9C 
RE/TL Real estate loans over total loans Federal Reserve Form FR-Y9C 
C&I/TL C&I loans over total loans Federal Reserve Form FR-Y9C 
HH/TL Household loans over total loans Federal Reserve Form FR-Y9C 
GrossCDS/TA $ of CDS held over total assets Federal Reserve Form FR-Y9C 
NetCDS/TA $ of CDS protection bought minus $ of CDS protection sold Federal Reserve Form FR-Y9C 

over total assets 
MBSheld/TA MBS securities held over total assets Federal Reserve Form FR-Y9C 
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C Risk Measures Details 

C.1 Exposure tail beta and contribution tail beta 

Systemic risk metrics differ in their ability to capture comovements under extreme stress. To robustify our 

analysis, we use the systemic risk measure of van Oordt and Zhou (2019a), known as tail beta, which captures 

the sensitivity of a bank’s stock market return to extremely adverse shocks to the financial system, based on 

just a few observations. In its original form, the tail beta is an exposure metric.28 It is based on a regression 

of bank returns Ri on system-wide returns Rs, restricted to the q%-tail of the system’s return distribution 

(Rs < −V aRs). This regression can be expressed as:q 

= βE for Rs,t < −V aRs , (73)Ri,t T,iRs,t + εi,t q 

where the system return is empirically proxied by that of the S&P Banking index. This regression cannot 

be estimated with OLS due to the low number of tail observations, and is instead estimated with extreme 

value theory methods (EVT) as in van Oordt and Zhou (2019a). These authors show that for a tail of k 

observations in a moving window totaling n observations, βE can be estimated asT 

V aRi 

βE = τi(k/n)
1/ξs k/n 

, (74)T,i V aRs 
k/n 

where k/n = q% is the size of the tail, ξs is a tail index estimated separately with the Hill (1975) EVT 

estimator, and the q% values at risk for the bank and the system (V aRi and V aRs ) are estimatedk/n k/n 

from the lowest k daily returns of the relevant return distribution. The parameter τ is a measure of the tail 

dependence between the bank and the market, defined as 

� 
τi(q) = Pr Ri < −V aRi | Rs < −V aRs , (75)q q 

28Hence we superscript it with an “E.” 
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and is estimated non-parametrically as in Embrechts, De Haan and Huang (2000). The estimation approach 

and its applications are developed in van Oordt and Zhou (2016) and van Oordt and Zhou (2019b), based 

on EVT methods as in De Haan and Ferreira (2006). We set the size of the tail at 4% as in van Oordt and 

Zhou (2016),29 and the estimation period at two years (about 500 daily observations) following Davydov et 

al. (2021).30 Based on the reasoning in van Oordt and Zhou (2019a), we also construct a contribution tail 

beta (βC ), capturing the effect of the bank on the system in the tail regressionT 

= βC for Ri,t < −V aRi , (76)Rs,t T,iRi,t + �i,t q 

restricted to observations when individual bank i’s returns drop within the worst q% of the return distribu-

tion. The contribution tail beta βC is similarly estimated by EVT as:T 

V aRs 

βC = τi(k/n)
1/ξi k/n 

, (77)T,i V aRi 
k/n 

where ξi is the tail index of individual bank i’s return distribution, estimated with the Hill (1975) estimator. 

For convenience, we transform βE and βC in log form, denoting them as Log(βE ) and Log(βC ), noting thatT T T T 

since the estimated βC is between 0 and 1, its logarithm is negative. This does not indicate a negative T 

contribution to systemic risk. 

Table 2 shows that, in line with our remaining measures, contribution consistently exceeded exposure 

both before and during the crisis, resulting in a large positive net beta averaging at 1.61 before and 1.31 

during the crisis. The average log exposure tail beta remained similar before and during the crisis, averaging 

at 0.33 and 0.22, respectively, with the change being statistically insignificant. The log contribution tail beta 

increased from -1.27 to -1.08. The variance of these measures did not change significantly, since they are 

slow-moving by construction. This family of metrics confirms our earlier CoVaR findings. 

29However, our results are robust to tail sizes anywhere from 2.5% to 5%. 
30The intention is to provide a time window closer to the one used by ΔCoVaR while still meeting the minimum sample 

requirement for EVT estimation. 
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C.2 Exposure MES and contribution MES 

Acharya et al.’s (2017) MES (marginal expected shortfall) is a reduced-form exposure metric aiming to 

capture the expected capital shortfall of individual bank i, conditional on stress in the rest of the system. By 

definition, this is an exposure metric, so we superscript it as MESE . The MESE for a bank i is constructed 

quarterly (the standard frequency in the literature) as the average of i’s daily returns, taken over the days 

where the system’s returns are within their worst 5% for each quarter. If Ri,d is the return of bank i on day 

d, then this bank’s exposure MES for quarter t is defined as 

X1 
MESE = where I = {worst 5% of days for the system return Rs,d},i,t Ri,d, (78)

|I| 
d∈I 

where Rs,d is the return of the S&P Banking Index. We create the contribution version of this metric, 

MESC , by interchanging the place of the bank versus the system while conditioning on the stress event. 

Thus, MESC is the average of the system’s returns conditional on bank i experiencing tail returns within 

their worst 5% for the quarter: 

X1 
MESC = where I = {worst 5% of days for i’s return Ri,d}. (79)i,t Rs,d,|I| 

d∈I 

Since stressed returns are negative, we take the negative values of MESE and MESC for ease of interpretation. 

Thus, higher exposure MES values indicate a higher exposure, and higher contribution MES values indicate 

a higher impact on the system by bank i. 

Consistent with ΔCoVaR and tail beta, Table 2 shows that the exposures of large banks to shocks from 

the system exceeded their systemic risk contributions. Table 2 shows that both the average exposure and 

contribution MES increase after the crisis, from 0.012 to 0.043 and from 0.006 to 0.039, respectively, with a 

positive Net MES both before and during the crisis. The standard deviations of both measures also increase 

after the crisis, rising from 0.007 to 0.022 and from 0.004 to 0.022. 
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C.3 Merton distance to default 

The Merton model uses two nonlinear equations to translate the value and volatility of a firm’s equity into 

a Z-score-like metric often dubbed distance to default (DD), calculated as: 

ln(V/F ) + (µ − 0.5σ2 )TVDD = √ , (80)
σV T 

where V is the firm’s total value, F is the face value of the firm’s debt, µ is an estimate of the expected 

annual return of the firm’s assets, σ2 is the variance of firm value, and T is the forecast horizon, usuallyV 

taken as 1 year. The main idea behind this calculation is to subtract the face value of the firm’s debt from 

an estimate of the firm’s market value and then divide this difference by an estimate of the firm’s volatility, 

scaled to the forecast horizon. The more market value exceeds debt given the volatility, the more stable the 

firm is. 

Since the volatility of firm value V is unknown, Merton’s (1974) bond pricing model is usually invoked 

to represent firm equity as a call option on the underlying firm value with a strike price equal to the face 

value of the firm’s debt and a time-to-maturity of T . Merton’s model links observed firm equity E, the face 

value of debt F , and firm value V in a nonlinear equation that can be solved numerically conditional on a 

few distributional assumptions, making it possible to calculate the distance in equation (80). We refer the 

reader to Merton (1974) and Bharath and Shumway (2008) for further details. 
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	“...Supervision of large ﬁnancial institutions is designed to: (i) enhance the resiliency of these ﬁrms, in order to lower probability of failure or inability to serve as a ﬁnancial intermediary, and (ii) to reduce the impact on the ﬁnancial system and the broader economy in the event of a ﬁrm’s failure or material weakness.” Board of Governors of the Federal Reserve System (2020) 
	Introduction 
	Introduction 
	Large US banks are regulated with the explicit intention to limit their risk impact on the rest of the banking system. This impact is often termed systemic risk contribution (Adrian and Brunnermeier, 2016), reﬂecting the systemic risk transmission from the bank to the system. Regulations implemented through the Dodd-Frank Act and the Basel III standard explicitly seek to reduce this transmission by making large banks subject to more complex regulations, higher capital requirements, and more regulatory scrut
	1 
	-

	The recent literature has developed systemic exposure and contribution metrics, permitting researchers to quantify the ﬂow of systemic risk between the bank and the system in each direction. For example, one common metric of systemic risk contribution is Adrian and Brunnermeier’s ΔCoVaR, while Acharya et al.’s (2017) marginal expected shortfall (MES) and Adrian and Brunnermeier’s Exposure ΔCoVaR are examples of metrics of systemic risk exposure. However, the literature has not yet considered what the direct
	The Dodd-Frank Act of 2012 strengthened existing measures and introduced new ones aimed at large banks, such as countercyclical capital buﬀers, DSIB capital surcharges, and annual stress tests, in order to increase solvency and prevent default risks from spilling over to the rest of the system. 
	1

	of such systemic risk linkages implies if the linkage in one direction is stronger than in the other one. To ﬁnd this out, we compare banks’ systemic exposures and contributions with a net exposure metric, and study the eﬀect of asymmetric systemic risk transmission on bank stability. 
	The importance of examining banks’ systemic exposures versus contributions can be illustrated with simple, but telling facts. Based on how large US banks are regulated, one would expect that their systemic risk contributions ought to exceed their systemic risk exposures, i.e., that their risks ought to spill over to other banks more easily rather than vice versa. More importantly, one would also expect that risk externalities generated by important banks are more detrimental to ﬁnancial stability than their
	2 
	3 
	o 

	Motivated by these facts and a toy model to build intuition, we hypothesize that banks’ net exposures result from business models that aﬀect exposure and contribution diﬀerently, and more precisely, from the balance between traditional lending and non-traditional trading activities. Since this balance also impacts a bank’s risk-return proﬁle, we hypothesize systemic risk directionality matters for banks’ individual stability. 
	We predict that banks optimally choose involvement in trading activities because they provide a hedge against idiosyncratic shocks, thereby reducing banks’ systemic contributions, but at the cost of exposing the 
	Systemic risk measures in this ﬁgure are computed using Adrian and Brunnermeier’s (2016) ΔCoVaR and Exposure ΔCoVaR, deﬁned in Section 4. 
	2

	These are banks that failed, had a direct subsidiary fail, received an enforcement action by the FDIC, or were acquired to prevent failure. 
	3

	banks to common shocks, which increase their systemic exposure. Thus, an optimally diversiﬁed portfolio consists of contribution-increasing traditional activities (e.g., real estate, household, and C&I loans) as well as exposure-increasing trading activities, which move exposure and contribution metrics in opposite directions. The net balance between these activities determines the bank’s overall net exposure. Since trading increases exposure and reduces contribution, the model predicts higher diversiﬁcatio
	We ﬁrst test whether a bank’s business model is correlated with its systemic net exposure. For this, we relate balance sheet variables with a bank’s net exposure computed using Adrian and Brunnermeier’s (2016) ΔCoVaR and Exposure ΔCoVaR.Interestingly, we ﬁnd that some variables that have been identiﬁed as a source of systemic risk (such as some non-interest income activities and the share of real estate loans) do not matter much for banks’ net exposures, whereas size, which has also been identiﬁed as a sour
	4 

	We also test the robustness of our results using Acharya et al.’s (2017) MES (marginal expected shortfall) and Oordt and Zhou’s (2019a) tail beta. 
	4

	impact on the net transmission factor and not on the net simulated shock to the bank, thus increasing the net fraction of losses transmitted in the system-to-bank direction. This is also the case for traditional lending, which decreases the net fraction of losses transmitted from the system to the bank. 
	We conﬁrm this asymmetry matters for banks’ stability. We use a variety of default risk measures (distance to default, Z-scores, and an indicator for insolvency based on banks’ default or cease-and-desist orders) to establish that net exposure before the global ﬁnancial crisis meaningfully correlates with banks’ default risk during the crisis. This eﬀect is economically signiﬁcant. For example, one standard deviation increase in net exposure deteriorates a bank’s distance to default by 0.11 standard deviati
	Furthermore, we examine the channels behind this relation. We show that the eﬀect on bank default risk is also driven by the net transmission factor rather than the net losses. In addition, in line with the model intuition, we ﬁnd the link between the net transmission factor and insolvency runs through asset risk, increasing the volatility of trading income and proﬁts. 
	Taken together, the evidence in this paper suggests high-net exposure banks engaged in activities that increased systemic exposure and, in particular, the transmission linkages with the rest of the system, such as derivatives trading, leaving banks exposed to the soundness of other counterparties. With the extensive involvement in these activities, banks suﬀered from increased income volatility during the crisis, increasing default risk. Trading activities were carried out at the cost of performing other ac
	Our ﬁndings oﬀer two important policy implications. First, interconnectedness in the ﬁnancial system is directional, and future bank regulation will increasingly need to reﬂect this. Regulation should focus on containing and imposing buﬀers on high-net exposure banks, rather than just large banks or banks displaying high systemic contributions. Second, default risk increases with the net transmission factor, 
	Our ﬁndings oﬀer two important policy implications. First, interconnectedness in the ﬁnancial system is directional, and future bank regulation will increasingly need to reﬂect this. Regulation should focus on containing and imposing buﬀers on high-net exposure banks, rather than just large banks or banks displaying high systemic contributions. Second, default risk increases with the net transmission factor, 
	which is positively related to size and trading activities. We argue that current bank supervision objectives can be achieved more eﬃciently if regulation focuses on reducing such net transmission factors, rather than buﬀering the default risks arising from them. Therefore, regulators should focus on monitoring banks’ size and further reducing banks’ interconnectedness through the derivatives market. 

	Our paper contributes to three distinct strands of literature. First, it contributes to the literature studying systemic risk measurement. Most of these papers have focused on measuring systemic risk exposure. Acharya et al. (2017) propose to measure systemic risk through the marginal expected shortfall (MES), which is the expected loss of a ﬁnancial institution conditional on the banking sector performing poorly. The SRISK (Brownlees and Engle, 2017) calculates the expected capital shortfall of a ﬁnancial 
	Our paper contributes to three distinct strands of literature. First, it contributes to the literature studying systemic risk measurement. Most of these papers have focused on measuring systemic risk exposure. Acharya et al. (2017) propose to measure systemic risk through the marginal expected shortfall (MES), which is the expected loss of a ﬁnancial institution conditional on the banking sector performing poorly. The SRISK (Brownlees and Engle, 2017) calculates the expected capital shortfall of a ﬁnancial 
	individual bank stability. 

	A few papers have distinguished between banks’ systemic exposure and contribution when studying aspects of systemic risk. For instance, Pagano and Sedunov (2016) investigate systemic risk exposure and sovereign debt; Bostandzic and Weiss (2018) compare systemic risk contributions and exposures of US versus European banks; and Sedunov (2016) studies the determinants of banks’ exposure and performance for high-exposure banks during the crisis. However, despite distinguishing exposures from contributions, thes
	Second, our paper also contributes to the literature studying the relationship between banks’ default risk and pre-crisis systemic risk. These papers have found mixed or insigniﬁcant results about this relationship when using a bank’s exposure (e.g., Acharya et al., 2017; Fahlenbrach et al., 2012) or contribution (e.g., Sedunov, 2016). We extend this literature by showing that a bank’s net exposure predicts the bank’s insolvency during the crisis better than its pre-crisis exposure or contribution. 
	Third, our paper also relates to the extant work on the determinants of systemic risk. This literature has focused on the eﬀects of bank characteristics (e.g., Davydov et al., 2021; Brunnermeier et al., 2020; Bostandzic and Weiss, 2018; Laeven et al., 2016), banking sector competition levels (e.g., Anginer et al., 2014; Silva-Buston, 2019), and country-level characteristics (De Jonghe et al., 2015; Anginer et al., 2014). Our study extends this work by taking into account the directionality of systemic risk 
	The rest of the paper is organized as follows. Section 2 describes some stylized facts. Section 3 describes a toy model to build up the intuition of our hypothesis. Section 4 describes the data and our risk measures. Section 5 shows the empirical strategy and lays out results from the regression analysis. Section 6 concludes. 

	Stylized Facts 
	Stylized Facts 
	Based on how large US banks are regulated, one would expect that their systemic contribution is larger and more important for systemic stability than the exposure they face from remaining banks. The Federal Reserve explicitly states that the supervision of large ﬁnancial institutions has two goals: to “enhance the resiliency of these ﬁrms” and “reduce the impact on the ﬁnancial system and the broader economy in the event of a ﬁrm’s failure or material weakness.” (Board of Governors of the Federal Reserve Sy
	It is therefore surprising to ﬁnd that large US banks consistently face larger exposures from the rest of the system than they pose to it, resulting in positive net exposures. Figure 1 shows the average exposure and contribution of the top 200 US bank holding companies around the 2007–08 ﬁnancial crisis, as measured by Adrian and Brunnermeier’s (2016) Exposure ΔCoVaR and ΔCoVaR.As the ﬁgure shows, large banks’ exposure (the blue line) is consistently higher than their systemic risk contribution (the red lin
	5 
	6 

	Moreover, banks with high net exposures appear to systematically diﬀer from the rest on a number of 
	All systemic risk measures are deﬁned and discussed in Section 4. 
	5

	A similar pattern is found in Diebold and Yilmaz (2014) when measuring banks’ exposure, contribution and net contribution based on variance decompositions. 
	6

	dimensions. One such dimension is size. The left and right panels of Figure 2 plot contribution versus exposure for the 20 smallest and 20 largest banks in our sample, with the diagonal line indicating the locus where contribution equals exposure. While the small banks are evenly split by the diagonal in a 10:10 ratio, 17 out of the 20 top banks appear below the diagonal with a positive net exposure. As evidenced by the dispersion of points in the ﬁgure, contribution alone or exposure alone are not very goo
	Figure 3 shows that banks with high net exposure performed worse during the crisis. Figure 3’s two panels show contribution versus exposure for the 20 safest and 20 riskiest banks in our sample, ranked according to their distance to default. While the safe banks in the left panel overwhelmingly feature negative net exposure, the risky banks to the right are mostly to the right of the main diagonal, featuring positive net exposure. In both Figures 2 and 3, banks with high insolvency risk(colored in red) appe
	7 

	To further understand the underlying diﬀerences between high and low-net exposure banks we inspect heterogeneities in several bank characteristics. Table 1 presents the standardized diﬀerences of bank characteristics for banks with above-and below-median values of net exposure, before and during the crisis. High net exposure banks diﬀer from the rest on a number of dimensions, the most important of which are higher involvement in trading and the CDS market, combined with high risk on the asset side through 
	-

	For instance, Table 1 shows that pre-crisis, banks with high net exposures gave out more loans relative to assets and generated higher loan loss provisions than the rest, despite being larger and less leveraged. However, they also featured diﬀerent loan portfolio compositions. In particular, when examining the various loan types, we observe high net exposure banks display a lower share of household loans and C&I loans. High net exposure banks also featured a more extensive involvement in trading activities 
	See Section 4.3 for how we deﬁne banks with high insolvency risk. 
	7

	oﬄoading risk via larger net purchases of CDS protection, and lower involvement in mortgage back securities held for hedging. These diﬀerences, taken together, point to a departure from the traditional business model that generates substantial linkages with the rest of the system through trading and the CDS market, combined with high risk on the assets side through the extension of risky real estate loans. We, therefore, hypothesize and subsequently verify that these banks feature higher net exposures becau

	Toy model 
	Toy model 
	Since it is not obvious why the same activity could aﬀect exposure and contribution diﬀerently, we ﬁrst build a toy model to inform intuition. We hypothesize that banks’ positive net exposures may be related to their business models and, more precisely, to the balance between traditional lending and non-traditional trading activities. 
	We explore this hypothesis with a simple short-run, partial equilibrium portfolio choice model. There is a continuum of competitive, risk-neutral, proﬁt-maximizing banks uniformly distributed over an interval [0,K] on the real axis. Each representative bank receives a deposit endowment of 1 and faces a portfolio choice problem of having to invest the endowment into an optimal mix of a low-risk, low-return asset (traditional lending) and a risky, high-return asset (trading), whose returns are exogenous (that
	-
	8 

	Because we model systemic risk, we cannot assume the two assets’ returns are uncorrelated; thus we orient the model towards a structure where asset covariance can be modeled tractably and explicitly. Such a structure is oﬀered by modeling the joint asset returns as two correlated binary variables. Each bank optimally invests a share α of its deposits in trading (Y ), and 1 − α in traditional lending (X). In the event of a good outcome, lending gives a return of 1 (net of interest and principal paid to depos
	Previous literature shows non-traditional activities feature higher risk than traditional lending activities (see, e.g., DeYoung and Roland, 2001). Furthermore, among the diﬀerent non-traditional activities, trading activities show to be riskier than other non-interest income sources (Chen et al., 2017; Stiroh and Rumble, 2006). 
	8

	small probability p> 0, the borrower defaults and the net return becomes 0. Likewise, in the event of a good outcome, trading produces a return R> 1, but with a probability q>p, a bad outcome occurs and the net return is also 0.The two assets comove with an exogenously determined covariance Cov(X, Y ). Consistent with the risk/return trade-oﬀ, trading oﬀers higher expected return in compensation for its higher risk, so EY> EX. The joint asset returns are shown in Matrix 1. 
	9 

	Matrix 1: Joint Model Asset Returns 
	Trading gain 
	Trading gain 
	Trading gain 
	Trading loss 

	Lending gain 
	Lending gain 
	(1, R), p1 
	(1, 0), p2 

	Lending loss 
	Lending loss 
	(0, R), p3 
	(0, 0), p4 


	Matrix 1 shows the joint asset returns for the two assets (X, Y ) for each possible combination of joint gains and losses, together with the associated probability of each outcome pτ . 
	Since the joint outcomes are not independent, we assign to them probabilities pto pas shown in Matrix 
	1 
	4 

	1. The binary structure of these random variables allows us to neatly express the above probabilities in terms 
	of the two assets’ individual loss probabilities and their covariance: 
	Lemma 1 The probabilities pto pcan be expressed in terms of p, q and Cov(X, Y ) as: 
	1 
	4 

	p=1 − p − q + pq + RCov(X, Y ) (1) p= q(1 − p) − RCov(X, Y ) (2) p= p(1 − q) − RCov(X, Y ) (3) p= pq + RCov(X, Y ) (4) 
	1 
	−1
	2 
	−1
	3 
	−1
	4 
	−1

	Proof: See Internet Appendix A. 
	Based on the outcomes in Matrix 1, the representative bank maximizes the expected proﬁt function 
	E(π)= p[1 + α(R − 1)] + p(1 − α)+ pαR − TC(α), (5) 
	1 
	2
	3

	These numbers can be linearly scaled or made negative as needed, but at the cost of signiﬁcantly complicating the computation of the covariance term. They do not change the model’s outcome. 
	9
	-

	where TC denotes total costs. To allow for an interior solution, costs are assumed convex (quadratic) in 
	each activity: TC(α)= α+ (1 − α)=1 − 2α +2α. (6) 
	2 
	2 
	2 

	The convex costs imply a strictly concave proﬁt function, and therefore the optimal asset mix αis given by the ﬁrst-order condition 
	∗ 

	∂E(π) 
	∂E(π) 

	= p(R − 1) − p+ pR +2 − 4α = 0 (7)
	1
	2 
	3

	∂α 
	∂α 
	∂α 

	producing an optimal solution 
	producing an optimal solution 

	α ∗ 
	α ∗ 
	= 
	1 2 
	+ 
	h i1 (1 − q)R − (1 − p)4 
	= 
	1 2 
	1 + [EY − EX] ,4 
	(8) 


	where we used the equations from Lemma 1 to simplify the expression. Thus, the optimal asset mix αdepends on the diﬀerence between the expected returns of the two assets and on the slope of the cost 
	∗ 
	function.
	10 

	We are interested on how trading (α) and lending (1 − α) aﬀect a bank i’s systemic exposure from and contribution to the rest of the system. The system in this setting is modeled as the sum of remaining banks on the interval [0,K]\{i}, which we interpret as a single aggregate agent. Since this is a representative agent model, the aggregate bank’s proﬁt Eπsys is the integration over the remaining banks’ proﬁts 
	Z 
	Eπsys = Eπj dj. (9) 
	[0,K]\{i} 
	Since in reality the system’s proﬁt is always larger than that of the individual bank, the empirical literature uses size-invariant units (such as percent or quantiles of the return distribution) to compare system and bank proﬁts. In the model, we implement this by calibrating the continuum of banks [0,K] representing 
	s predicting that banks invest half or more of their deposits in trading. The free term 1/2 in equation (8) is produced by the squared term in the quadratic cost function (6), chosen because it produces a tractable linear solution. This term can be made smaller by choosing a steeper cost function, but at the cost of sacriﬁcing tractability. This does not change the direction of the eﬀects in the model. 
	10
	The model should not be interpreted literally a

	the full system to the unit interval [0, 1]. This is equivalent to positing that if i is an individual bank, then 
	the rest of the system is represented by another bank with an analogous proﬁt function, interpreted as an aggregate agent. The system and the individual bank interact through two stylized, reduced-form channels transferring the risk in the system-to-bank and bank-to-system direction. 
	System-to-bank channel. Consistent with the empirics of the 2008 crisis, we assume that system-to-bank contagion occurs through common exposures to the risky asset Y . For exposition purposes, it is helpful to think of trading losses from Y as occurring contemporaneously across all banks, and of lending losses from X as not necessarily coincident with the trading shock, depending on Cov(X, Y ). Thus, the trading shock can be thought of as a systemic one (common to all banks), while the lending shock can be 
	11 

	E = Eπ − E(πi|Y = 0). (10)
	∗ 

	i 
	This deﬁnition emulates Adrian and Brunnermeier’s (2016) empirical exposure metric Exposure ΔCoVaR used in Figures (1) to (3).
	12 

	The trading shock Y = 0 occurs in the two events associated with probabilities pand pin Matrix 1, 
	2 
	4 

	an of the return distribution. 
	11
	Adrian and Brunnermeier (2016) use the medi

	The model deﬁnition is a conceptual analog of the Exposure CoVaR measure, but should not be interpreted as being literally identical, since the model’s main purpose is to build intuition. For tractability reasons, we use means rather than medians, the proﬁt distribution rather than stock return distribution, etc. For the same reasons, certain decompositions that can be done with the empirical CoVaR’s are not straightforward with the model ones (e.g. decomposition into a transmission factor and a return shoc
	12

	resulting in an associated conditional proﬁt function 
	p
	p
	2
	(1 − α)+ p
	4 
	· 0 p
	2
	(1 − α)

	E(πi|Y =0) = − TC(α)= − TC(α), (11)
	1 − p− pq 
	1 
	3 

	where we used the identity (1 − p− p)= p+ p= q to simplify the expression. Thus, a bank’s systemic exposure is the diﬀerence between the equilibrium proﬁt Eπand the conditional proﬁt (11). 
	1 
	3
	2 
	4 
	∗ 

	Bank-to-system channel. The individual bank i can also transmit risk to the system if i’s proﬁts deteriorate. This transmission happens through the counterparty risk channel. Real-world banks use their revenues to settle end-of-day payments and repay intraday loans on the interbank loan market; a deterioration in revenues (proﬁts) increases this counterparty risk commensurate with the drop in i’s proﬁts. For model purposes, we therefore deﬁne i’s systemic risk contribution as the drop in system proﬁts condi
	-

	C = Eπ − E(πsys|si). (12)
	∗ 

	sys 
	This deﬁnition emulates Adrian and Brunnermeier’s (2016) metric ΔCoVaR. In the model, i’s proﬁt drop relative to the mean aﬀects the second (aggregate) bank in a one-to-one fashion, because the aggregate bank has the same proﬁt function; the interpretation is that shocks making one bank unstable transfer over to the second (aggregate) bank. Such negative shocks to proﬁts occur in the events associated with probabilities p, pand pat or below the main diagonal of Matrix 1. The associated conditional proﬁt fun
	2
	3 
	4 

	Z 
	p
	p
	2
	(1 − α)+ p
	3
	αR + p
	4 
	· 0

	E(πsys|si)= E(πj |si)dj = − TC(α), (13) 
	[0,1]\{i} 
	1 − p
	1 

	where we used the fact the excluded bank i is small relative to the market and has a measure of zero. Using this setup, one can obtain the following results: 
	Proposition 1 Near the optimal asset mix α, a bank’s systemic exposure E increases in α and its systemic 
	∗ 

	contribution C falls in α: 
	∂E ∂C 
	> 0,< 0, (14)
	∂α ∂α 
	α∗ α∗ 
	provided that the riskier asset has a higher return (EY> EX), but not so high as to be incomparable: 
	p
	R<κ + , where κ = q[2(1 − q(1 − p))− p]. Moreover, net exposure E(α) −C(α) strictly increases in α. 
	κ
	2 
	− 2p
	−1

	Proof: See Internet Appendix A. 
	The intuition behind this result is based on the costs and beneﬁts of diversiﬁcation. Investing a positive amount α in a trading asset Y increases both the bank’s exposure to common trading shocks and its resilience to negative lending shocks because of hedging. The former eﬀect increases the risk of the individual bank scoring a trading loss together with all other banks. The latter eﬀect reduces the drop in bank proﬁts conditional on a lending shock through the trading asset’s use as a hedge at least some
	in the system-to-bank direction (i.e. exposure), as shown by the ﬁrst part of Proposition 1. 
	Therefore, the model suggests trading involvement can have opposite eﬀects on diﬀerent systemic risk measures: it increases systemic risk when measured by an exposure measure, and reduces systemic risk when measured by a contribution measure. Traditional activities, as a substitute, exert the opposite eﬀects. This provides plausible insight into the empirical facts in Table 1. Moreover, based on the same logic, it can be shown that at the optimal asset mix α, exposure exceeds contribution: E(α) >C(α). There
	∗ 
	∗
	∗

	Diversiﬁcation, however, could have negative implications during a crisis if the covariance of assets goes up. For example, the 2008 ﬁnancial crisis was characterized both by a jump in mortgage defaults and a simultaneous derivatives market decline. Table 1 shows banks with above-median net exposures exhibited higher default risk during the crisis, measured by metrics such as Z-Scores. To explore the eﬀect of diversiﬁcation on default risk, we therefore create a corresponding “model Z-Score” variable and ex
	-

	1+ Eπ 
	Z − Scoremodel = p (15) 
	V ar(π) 

	and explore what happens to bank stability conditional on an increase in Cov(X, Y ).
	13 

	Proposition 2 Recalling that a lower Z-Score implies higher default risk, 
	(i) At the optimal diversiﬁcation point α, default risk is increasing in net exposure deﬁned as NE ≡ 
	∗ 

	E(α) − C(α): 
	∂(Z − Scoremodel)

	(α ) < 0. (16)
	∗ 

	∂NE 
	et al. (2008). 
	13
	This Z-Score deﬁnition closely follows Lepetit 

	(ii) Conditional on a crisis that increases Cov(X, Y ), diversiﬁed banks face higher default risk compared to 
	non-diversiﬁed banks and compared to the pre-crisis period. 
	⎧ ⎪
	⎨
	< 0 if α ∈ (0, 1) and
	∂(Z − Scoremodel) 
	∂(Z − Scoremodel) 

	(17)
	∂Cov(X, Y ) ⎪
	⎩
	=0 if α =0 or α =1. 
	(iii) Cov(X, Y ) increases default risk through increasing the volatility of proﬁts V ar(π). 
	Proof: See Internet Appendix A. This result shows three related phenomena. Firstly, since trading increases exposure and reduces contribution, more trading means a higher net exposure, but such higher exposures increase default risk because the possibility of two coincident bad shocks means higher proﬁt variance (part (i)). Secondly, while diversiﬁcation helps hedge bank-speciﬁc shocks, when cross-asset covariance goes up, the volatility of proﬁts goes up because the two negative proﬁt shocks occur together
	-
	-

	The model thus provides a number of testable implications: (1) That trading activity resulting from optimal diversiﬁcation can aﬀect exposure and contribution measures of systemic risk in opposite ways. This occurs because trading helps hedge bank-speciﬁc risks, but at the cost of increasing banks’ exposure to common shocks to which they would not otherwise be exposed; (2) That traditional lending, being a substitute to trading, moves the above systemic risk measures in directions opposite to that of tradin

	Data and Risk Measures 
	Data and Risk Measures 
	In this section, we present the data and risk measures used to test our empirical predictions. To measure both systemic risk exposures and contributions, we rely on the observation of Adrian and Brunnermeier (2016) that one can compute both the comovement of an individual bank against a system-wide shock as well as the comovement of the system in response to a bank-speciﬁc shock using diﬀerent conditioning on the same data. The interchangeability of the individual bank and the system in the ΔCoVaR and Expos
	To compute systemic risk measures and study their relationship to bank-speciﬁc covariates and default risk, we combine data from several sources. We obtain quarterly bank-level data from the Federal Reserve’s Form FR-Y9C, containing the balance sheets of US bank holding companies. Since systemic risk asymmetries are surprising only for large banks, we focus our analysis on the top 200 US commercial bank holding companies as of Q4:2006. We combine this data with daily share-price information from Bloomberg. 
	Following Bertrand et al. (2004), we collapse the time series information in the data and convert it to a panel with two periods: pre-crisis and crisis, containing the period’s average for each bank.As in Fahlenbrach et al. (2012), we deﬁne the crisis as Q3:2007–Q4:2008, and the pre-crisis period, symmetrically, as Q1:2006–Q2:2007, including the endpoints. However, our results are robust to the choice of period 
	14 
	length.
	15 

	The data we thus assemble, therefore, contains a cross-section of the top 200 US bank holding companies observed during the crisis, with lagged controls from the The summary statistics for the sample are provided in Table 2. Variable deﬁnitions and data sources are listed in Internet Appendix B. 
	pre-crisis period.
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	4.1 Systemic risk measures 
	4.1 Systemic risk measures 
	4.1.1 ΔCoVaR and exposure ΔCoVaR 
	As our main systemic risk measures, we adopt Adrian and Brunnermeier’s (2016) ΔCoVaR and Exposure ΔCoVaR. These two measures evaluate the extent to which a shock to a bank’s return (system’s return, respectively) moves the system’s (bank’s) return. The shock is simulated as a drop from the median to the bottom q% quantile of the relevant return distribution. The regular (i.e., contribution) ΔCoVaR shocks the bank’s return to determine its eﬀect on the system, while Exposure CoVaR shocks the ﬁnancial system’
	Adrian and Brunnermeier (2016) deﬁne a bank i’s contribution ΔCoVaRas follows. If q is a speciﬁc quantile of the stock return distribution, Ri the stock market return of ﬁnancial institution i, and Rs that of the system (empirically proxied by the S&P Banking index return), then the impact of institution i on the system equals the change of the system’s value at risk conditional on a shock moving bank i from its 
	C 

	e times series information into pre-crisis and crisis periods corrects standard errors that are otherwise inconsistent when running diﬀerence in diﬀerence estimations with serially correlated outcomes. 
	14
	Bertrand et al. (2002) show that collapsing th

	We also explore other deﬁnitions. For example, Cornett et al. (2011) deﬁne the crisis as Q3:2007–Q2:2009, and Huang et al. (2012), as Q3:2007–Q4:2009. Our results remain qualitatively very similar using these alternative periodizations. 
	15

	Not every bank has a valid value for every balance sheet variable, thus some robustness regressions feature slightly fewer than 200 banks. For our baseline regressions, we select the sample as the top 200 US BHCs with nonmissing CoVaR and Exposure CoVaR as of the last quarter before the crisis (2007:Q2), so these regressions always have 200 banks. 
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	median state to its q-percent quantile. More formally, 
	s|R=V aR qs|Ri =V aRi 
	i 
	i 

	50
	ΔCoV aR= CoV aR − CoVaR , (18)
	C 

	i,qq q 
	where CoVaR is the value at risk of the system’s return conditional on the state of bank i (corresponding to the bank’s q-th percentile in the ﬁrst term and its median state in the second one).Exposure ΔCoVaR, which captures the system’s inﬂuence on the bank, is deﬁned by interchanging the place of the bank and the system in equation (18) to obtain: 
	17 

	i|R=V aR qi|Rs =V aRs 
	s 
	s 

	50
	ΔCoV aR= CoV aR − CoVaR . (19)
	E 

	i,qq q 
	Adrian and Brunnermeier (2016) show that ΔCoVaR and Exposure ΔCoVaR can be equivalently expressed as the product of a risk transmission factor β times a shock to the relevant entity’s return from the median to the q-th percentile: 
	ΔCoV aR= β(V aR− V aR(20)
	C 
	C 
	i 
	i 

	i,qi q 50
	) 

	ΔCoV aR= β(V aR− V aR(21)
	E 
	E 
	s 
	s 

	i,qi q 50
	), 

	where ΔCoV aRand ΔCoV aRrespectively denote Contribution and Exposure ΔCoVaR for bank i,
	C 
	E 

	i,q i,q 
	calculated at q%; V aRq and V aRare the q% and median value at risk, indexed with i for the individual bank and with s for the system, and the β coeﬃcients capture what fraction of the simulated shock transmits from the bank to the system (β) and vice versa (β). The CoVaR is the ﬁrst mainstream, market-based family of measures evaluating the ﬂow of risk in either direction. This is done in a methodologically consistent way because the place of the bank and the system is interchangeable in the risk calculati
	50 
	C 
	E 
	18 

	The conditional value at risk for the system, CoV aR, is implicitly deﬁned by the equation Pr Rs|C(Ri) ≤ 
	17
	s 

	q 
	. 

	s|C(Ri )
	CoV aRq = q% , where C(Ri) is some event aﬀecting bank i’s return Ri. 
	It is reasonable to ask whether the system shock (the 5% VaR of the banking index) is comparable to the 5% VaR shocks of the individual banks. The summary statistics show no evidence that the two shocks operate on a diﬀerent scale, but nonetheless, we explicitly test for this in a series of unreported robustness tests. In them, we construct the system shock for 
	18

	factors β are inherently comparable by design: β’s simply measure the rate of risk transmission in the relevant direction (system-to-bank and vice versa) completely independent of the shock component. CoVaR betas thus consistently measure the individual bank’s and the system’s sensitivity to each other. We follow Adrian and Brunnermeier (2016, Section II.B) in estimating the VaR and β components in equations (20) and (21) with the quantile regression approach using q set to 5.For ease of interpretation, we 
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	Table 2 shows that Exposure ΔCoVaR consistently exceeds ΔCoVaR both before and during the crisis, resulting in a positive NetΔCoVaR (this is also shown graphically in Figure 1). This indicates that as a whole, the large US banks forming our sample were more exposed to spillovers from the system than vice versa. Before the crisis, the average exposure and contribution were 0.013 and 0.012, respectively. Both ﬁgures increase during the crisis, rising to 0.044 and 0.027, respectively, and maintaining the posit
	4.1.2 Other systemic risk measures 
	Since systemic risk metrics diﬀer in the extent to which they capture comovements under extreme stress, we robustify our analysis with two additional systemic risk measures suitably modiﬁed to measure systemic risk in both directions: tail beta and MES. 
	Exposure tail beta and contribution tail beta. Firstly, we use van Oordt and Zhou’s (2019a) exposure metric tail beta β, which captures the sensitivity of a bank’s stock market return to extremely adverse shocks to the ﬁnancial system, based on just a few tail observations. It is interpreted as the regression coeﬃcient from a regression of the bank’s return Ri,t on the system’s return Rs,t, restricted to the tail of 
	T
	E 

	Exposure CoVaR as the cross-sectional average of the sampled banks’ individual shocks. This did not change our results, which remained quantitatively and qualitatively similar. 
	Following Adrian and Brunnermeier (2016), we require banks to have at least 260 weeks of equity return data to be included in the sample, and estimate this model over a long time period, from 1999 to 2016, thus allowing reasonable inference. 
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	the system’s return where the latter is smaller than a pre-speciﬁed quantile V aR. The regression is
	s 

	q 
	Ri,t = βfor Rs,t < −V aR. (22)
	E 
	s 

	T,is,t i,t q 
	R
	+ ε

	By analogy, we create a contribution tail beta βby running the regression in the opposite direction
	C 

	T,i 
	= βfor Ri,t < −V aR. (23)
	C 
	i 

	Rs,t T,iRi,t + .i,t q 
	This type of regression is estimated with extreme value theory (EVT) methods, detailed in Internet Appendix C. 
	Exposure MES and contribution MES. Acharya et al.’s (2017) MES (marginal expected shortfall) is a reduced-form exposure metric aiming to capture the expected capital shortfall of individual bank i, conditional on stress in the rest of the system. These authors have shown that MES is a powerful predictor of the institutions aﬀected by the 2008 crisis. This exposure measure, which we label MES, is constructed as the average of bank i’s daily returns, taken over the days where the system’s returns are within t
	E 
	C 


	4.2 Net systemic risk measures 
	4.2 Net systemic risk measures 
	We have hypothesized that banks’ business models have opposite eﬀects on banks’ exposure and contribution, and that default risk during the crisis is positively related to banks’ net exposure (the diﬀerence between its exposure and contribution). Banks with positive net exposures feature a stronger system-to-bank risk transmission, whereas banks with negative net exposures feature a stronger bank-to-system transmission. Since we can measure the risk in each direction for each of the three bidirectional meas
	or MES discussed above, we deﬁne the corresponding net measure as follows: 
	Net Measurei,t = Measure(24)
	E 

	− Measure
	i,t 
	C 

	i,t
	, 

	where Measure equals ΔCoVaR, βT , or MES, and the superscripts E and C index the exposure and contribution version of the metric, respectively. 
	Table 2 shows the descriptive statistics for the net exposure measures. Our main net measure, Net ΔCoVaR, has an average value of 0.001 before the crisis, which increases to 0.018 after the crisis. The table also shows that there is signiﬁcant variation in this variable: the 25th and 75th percentiles, respectively, are -0.003 and 0.006 before the crisis, and 0.009 and 0.027 during the crisis. 
	The three systemic risk measures complement each other by capturing diﬀerent systemic risk aspects. For example, ΔCoVaR’s components give a 100% weighting to the bottom q% quantile; MES, on the contrary, gives equal weight to all quantiles below the q% quantile and zero weight to remaining quantiles (Hull, 2006); and tail beta uses all observations below the q% quantile. Therefore, they produce non-identical, but similar results. 
	Table 3 shows that ΔCoVaR, MES, and tail beta are positively correlated in all of their versions – exposure, contribution, and net. Being equally weighted below the cutoﬀ, MES correlates strongly with both tail beta and ΔCoVaR (28%–59% with ΔCoVaR, and 30–38% with tail beta). Regardless of their diﬀerent construction, ΔCoVaR and tail beta are also positively correlated everywhere, only less consistently across diﬀerent versions (4%–47%). This is likely because ΔCoVaR focuses solely on the location of the q%
	Table 4 shows the top 50 banks with the largest net systemic exposure in the pre-crisis period acording to Net ΔCoVaR. The table reveals the presence of large important banks, such as Bank of America and 
	Citigroup, as well as banks that later faced insolvency problems, such as Wachovia, Irwin Financial, and 
	Nexity Financial. 

	4.3 Individual risk metrics 
	4.3 Individual risk metrics 
	To study the relation between systemic risk asymmetries and bank default risk, we measure individual bank risk with metrics such as distance to default, accounting Z-scores, and a dummy variable for insolvent or risky banks. 
	Distance to default. As a default risk metric, we use the classic distance to default (DD) based on the Merton bond pricing model Its calculation is detailed in Internet Appendix C. The distance to default is a measure of distance to insolvency; a higher value of this variable indicates better bank soundness. Table 2 shows this measure substantially decreases during the crisis, indicating higher default risk, as expected. The pre-crisis average equals 8 and decreases to 2.9 in the crisis period. 
	(Merton, 1974).
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	Z-Scores. As an alternative measure of individual default risk, we compute each bank’s pre-crisis and crisis accounting Z-Score (Roy, 1952). Z-Score is widely used in the literature examining banks’ stability (e.g., Demirg¨u¸c-Kunt and Huizinga, 2010; Houston et al., 2010, and many others). This measure captures banks’ buﬀers, measured by their returns, and their risks, measured by the returns’ standard deviations. It is calculated as 
	ROAi,t + (Total equity capital/Total Assetsi,t)
	i,t

	Z-Scorei,t = , (25)
	σROAi,t where ROA is a bank’s return on assets (ROA) and σROA is the standard deviation of ROA, calculated over the relevant period (pre-crisis and crisis). In separate regressions, we also split this measure into its numerator and its denominator. 
	As the distance to default, the Z-Score is also a measure of distance to insolvency; thus, higher values indicate lower default risk. The average Z-Score decreases from 3.4 to 3.1 during the crisis. 
	Insolvency dummy. As a third measure of individual default risk, we construct a dummy variable 
	y of the Bank of Canada’s Financial Institutions division. 
	20
	This data was calculated and provided courtes

	called Insolvency, ﬂagging the banks with high risk of insolvency during the crisis. We set the Insolvency dummy equal to 1 for banks that failed, were acquired to prevent failure, had a direct subsidiary fail, or had an enforcement action known as a cease-and-desist order issued by the FDIC during the Such an order is issued if a bank engages in unsafe and unsound practices or violates a law, rule, or regulation, a condition imposed in writing by the FDIC, or a written agreement with the FDIC (Federal Depo
	crisis.
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	5 Empirical Strategy and Results 
	5 Empirical Strategy and Results 
	5.1 Determinants of net systemic risk exposure 
	5.1 Determinants of net systemic risk exposure 
	Proposition 1 in our model suggests that banks with diﬀerent business models can undertake activities that aﬀect their systemic contributions and exposures diﬀerently, thereby creating asymmetric (directional) linkages with the rest of the system. We test this hypothesis in this section and examine the balance sheet determinants of a bank’s systemic risk exposure, contribution and net exposure. For this, we relate the systemic risk measures averaged in the crisis period to lagged bank balance sheet variable
	We start by investigating our model’s primary net exposure determinant: a bank’s business model. For this purpose, we examine banks’ non-interest income. The bank risk literature shows that diﬀerent non-interest income sources have a diﬀerent relationship with bank risk (Stiroh and Rumble, 2006; Chen et al., 2017). Therefore, we split non-interest income into securitization revenue, ﬁduciary income, and trading 
	c deﬁnition of the crisis period in this risk measure we include banks that failed all the way up to Q4:2010. 
	21
	To reduce the results’ sensitivity to the speciﬁ

	income. We include all three variables measured as a fraction of total income. We also include loan loss 
	provisions over total loans and ROA to study banks’ risk-return proﬁles. 
	Non-interest income activities have been shown to be more volatile than traditional sources of income (DeYoung and Roland, 2001), and banks would earn income in the same correlated non-interest income activities, thus increasing banks’ systemic risk exposure and contribution (Brunnermeier et al., 2020). At the same time, lower portfolio quality has been documented to positively relate to banks’ systemic exposure and contribution (see, e.g., Brunnermeier et al., 2020). On the other hand, as documented in the
	Second, we consider a bank’s loan portfolio. This allows us to examine a bank’s exposure to traditional activities. To this end, we follow Brunnermeier et al. (2020) and include loans over total assets and the share 
	Second, we consider a bank’s loan portfolio. This allows us to examine a bank’s exposure to traditional activities. To this end, we follow Brunnermeier et al. (2020) and include loans over total assets and the share 
	of real estate loans, commercial loans, and household loans over total loans. The literature shows mixed results about the relation between systemic risk and the share of loans (see e.g., Bostandzic and Weiss, 2018). A bank’s portfolio mix has been identiﬁed as a key driver of systemic risk during the crisis, and in particular, the share of real estate loans (Herring and Wachter, 1999; Crowe et al., 2011). Column (2) suggests no signiﬁcant relationship between a bank’s loan portfolio composition and its sys

	In the next columns, we follow the systemic risk literature and study how various other balance sheet variables relate to net systemic risk. Thus, in a third set of regressions, we study the relationship between banks’ systemic risk and funding structure. To this end, we include leverage and deposits over loans in our regressions. The previous literature, however, shows mixed results on the relationship between funding structure and systemic risk – both exposure and contribution (see, e.g., Brunnermeier et 
	Fourth, we consider derivatives usage to proxy for interconnectedness and complexity. For this, we study 
	Fourth, we consider derivatives usage to proxy for interconnectedness and complexity. For this, we study 
	gross and net CDS positions over total assets,and mortgage back securities (MBS) held until maturity over total assets. Derivatives can be used for risk management purposes, thus containing losses in crisis periods (Silva-Buston, 2016). However, they also increase interbank linkages as banks act as counterparts of each other. Therefore, the eﬀect on systemic risk is ambiguous. Column (4) suggests no signiﬁcant relationship between a bank’s interconnectedness and systemic exposure, while the model for bank c
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	Finally, we include bank size, measured by the logarithm of assets, in all models since bank size is documented to be one of the main drivers of systemic risk exposure and contribution (e.g., Brunnermeier et al., 2020; Bostandzic and Weiss, 2018). In line with this literature, the logarithm of assets enters with a positive and signiﬁcant sign in all models, including the net systemic exposure models, suggesting that large banks display not only high exposure and contribution, but also high net systemic expo
	The eﬀects on net systemic exposure are also economically signiﬁcant. Considering the coeﬃcients in the last column of Table 5, a one standard deviation increase in size (1.52) is related to a rise of 0.29 standard deviations in net exposure CoVaR. By contrast, a one standard deviation increase in commercial loans (0.1) and household loans (0.07) is related to a reduction by 0.31 and 0.38 standard deviations in net exposure 
	the amount of credit derivatives held for risk management purposes versus trading. Thus, we include in our models the aggregate amount of credit derivatives. 
	22
	Unfortunately, FR-Y9C data does not report 

	CoVaR, respectively. In addition, a one standard deviation increase in derivatives trading income (0.01) and gross CDS positions (0.006) is related to a respective rise of 0.20 and 0.18 standard deviations in net CoVaR during the crisis. We obtain similar results in unreported robustness tests using the alternative systemic risk measures MES and tail beta. 
	In Table 6, we investigate the determinants of the components of the net CoVar exposure. Columns 
	(1) to (5) examine the net transmission component (net β CoVaR), and columns (6) to (10) examine the net losses component (net shock CoVaR). We ﬁnd that the proportion of commercial loans and household loans are strongly negatively related to the net fraction transmitted from the system to the bank. Taking the coeﬃcients in column (5), a one standard deviation increase in commercial loans and household loans is related to a reduction of 0.30 and 0.44 standard deviations in the net β, respectively. Conversel
	When we examine the net losses in the next ﬁve columns, we ﬁnd that trading activities reduce the net losses to be transmitted to the bank when the system is in distress. In contrast, ﬁduciary income, leverage, and the proportion of commercial loans and household loans, are related to higher net losses to be transmitted to the bank, as shown by the models in columns (6) to (10). When considering the coeﬃcients in column (10), a one standard deviation increase in ﬁduciary income, leverage, commercial loans, 
	The analysis in this section oﬀers several lessons. It conﬁrms the model’s predictions that banks with different business models undertake activities that aﬀect their systemic contributions and exposures diﬀerently. In particular, trading activities increase net exposure, whereas higher involvement in C&I and household 
	The analysis in this section oﬀers several lessons. It conﬁrms the model’s predictions that banks with different business models undertake activities that aﬀect their systemic contributions and exposures diﬀerently. In particular, trading activities increase net exposure, whereas higher involvement in C&I and household 
	-

	loans decrease net exposure. Furthermore, the results show that even though some balance sheet variables, such as the share of real estate loans, have been previously identiﬁed as a source of systemic risk, they do not signiﬁcantly increase and can even decrease net systemic exposure. At the same time, size, which has also been identiﬁed as a key determinant of both exposure and contribution, increases net systemic exposure. The analysis suggests that the eﬀect of size and trading activities on net exposure


	5.2 Net exposure and default risk 
	5.2 Net exposure and default risk 
	We now turn to test Proposition 2 in our toy model. It predicts that higher net exposure increases proﬁt volatility and default risk. To test this prediction, we examine the relation between a bank’s pre-crisis net systemic exposure, its components (exposure and contribution) and its default risk during the crisis. We test this hypothesis with the following cross-section model at the bank level: 
	yi,crisis = βSystemic risk+ βXi,pre + .i, (26) 
	1
	i,pre 
	2

	where yi,crisis is a measure of default risk measured in the crisis period, proxied by distance to default, the Log(Z-Score), and a dummy variable indicating whether the bank faced insolvency risk during that time. Systemic riski,pre is a bank’s systemic risk exposure, systemic risk contribution, or its systemic net exposure (the diﬀerence between the two). Xi,pre is a set of bank controls. All systemic risk measures and controls reﬂect the pre-crisis period. As bank controls, we include a bank’s log assets
	the crisis was aﬀected by government interventions, we also control for whether the bank received TARP aid 
	by including a dummy variable ﬂagging such banks. 
	The results of these models are shown in Table 7. We examine the relationship between a bank’s pre-crisis systemic risk exposure and its crisis default risk in the ﬁrst three columns of this table. All three models show no signiﬁcant relationship between systemic risk exposure and insolvency risk. This result is in line with the previous literature, which has documented mixed results about the relationship between pre-crisis systemic exposure and bank performance during the crisis (see, e.g., Acharya et al.
	We allow for the possibility that both measures may be correlated and, at the same time, aﬀect bank soundness independently. Hence, we include exposure and contribution measures together in the next three columns, (7) to (9). The results remain similar to those in previous regressions. Systemic exposure enters with an insigniﬁcant coeﬃcient in all three models, and systemic contribution coeﬃcients suggest a positive relationship with bank soundness in the Z-Score and insolvency models. However, the coeﬃcien
	-

	Finally, we investigate the net systemic risk exposure in the last three columns of this table in accordance with the model predictions. According to the model, a bank’s net diﬀerence E − C is positively related to default risk. Thus, we test whether the variation in this net diﬀerence aﬀects bank stability. Results 
	Finally, we investigate the net systemic risk exposure in the last three columns of this table in accordance with the model predictions. According to the model, a bank’s net diﬀerence E − C is positively related to default risk. Thus, we test whether the variation in this net diﬀerence aﬀects bank stability. Results 
	conﬁrm this is the case; the net systemic risk measure now enters signiﬁcantly in all three regression models, conﬁrming our toy model predictions. Furthermore, the adjusted R-squared in the distance to default and Z-Score models in columns (10) and (11) (not reported) are higher when the net measure, rather than both measures independently, are included in columns (7) and (8) (0.07 versus 0.06 and 0.23 versus 0.20, respectively), suggesting net measure variation better predicts default risk. Both the dista
	-
	-
	crisis.
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	The results in Table 7 conﬁrm our hypothesis and suggest that it is not high systemic exposures or high contributions alone that increase banks’ default risk, but rather, it is the net systemic risk exposure that matters. Moreover, it is important to note this measure independently relates to a bank’s default risk when controlling for other bank covariates, as suggested by its robust and signiﬁcant coeﬃcient. This evidence indicates that net exposure better captures a bank’s overall risk-return proﬁle cause
	brach et al. (2012). 
	23
	This has also been documented in e.g., Fahlen

	activities. As in Figure 3, banks with both high exposure and high contribution pre-crisis were not the ones that experienced heightened default risk during the crisis; the riskiest banks were those with the largest systemic risk asymmetry. This strongly suggests that not just systemic risk, but also its directionality matter for ﬁnancial stability. To our knowledge, this paper is the ﬁrst to demonstrate this result. Thus, high systemic exposure alone may not be detrimental for individual bank stability if 
	We conﬁrm our results with a couple of additional tests. First, we run an instrumental variable model to address potential endogeneity concerns. In our baseline regressions, we lag net systemic risk measures, which reduces reverse causality concerns. However, unobserved confounding factors aﬀecting both systemic risk in the pre-crisis period and default risk during the crisis could still bias our results. To address this concern, we instrument for Net ΔCoVaR in a series of instrumental variable regressions.
	requirements.
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	We present the results of these models in Panel A of Table 8. The ﬁrst stage of these models shown in 
	These reserve cities were: Albany, Baltimore, Boston, Chicago, Cincinnati, Cleveland, Detroit, Leavenworth, Louisville, Milwaukee, New Orleans, New York City, Philadelphia, Pittsburgh, Providence, San Francisco, St. Louis, and Washington. 
	24

	columns (1), (3), and (5) show a positive and signiﬁcant relationship between the reserve city dummy and net exposure, conﬁrming banks in these cities display higher net exposure to systemic risk. The F-statistics in these models are close to 10, which suggests the instrument The second stage of these models presented in columns (2), (4), and (6) conﬁrm our previous results. The coeﬃcients in the distance to default and the Z-Score models remain statistically signiﬁcant and are larger in absolute terms, whi
	is relevant.
	25 

	Second, we conﬁrm our ﬁndings using two alternative net systemic risk exposure measures: the net tail beta (after van Oordt and Zhou, 2019a) and the net marginal expected shortfall (after Acharya et al., 2017), computed as described in section 4.1. The results in Panel B of Table 8 conﬁrm the ﬁndings obtained from the CoVaR, showing negative and signiﬁcant coeﬃcients for distance to default, and positive and signiﬁcant marginal eﬀects for the failure model for the net exposure as measured by net tail beta a

	5.3 Systemic risk components and default risk 
	5.3 Systemic risk components and default risk 
	Next, we examine which component of net exposure drives default risk – the net shock or the net transmission factor. The net shock is the diﬀerence between the losses transmitted to the bank when the system is in distress and the losses to be transmitted to the system when the bank is in distress. It is deﬁned as 
	(V aR− V aR− V aR
	q
	s 
	s 
	i 

	50− (V aR), from equations (21) and (20). The net transmission is the diﬀerence
	) 
	i 
	50

	q 
	between the fraction of the simulated shock transmitted from the system to the bank (β) and the fraction transmitted from the bank to the system (β). Thus, we deﬁne net transmission as β− β= Net βi.
	E 
	C 
	E 
	C 

	ii 
	an 10, we conﬁrm our results using the Anderson Rubin Wald test, which allows for robust inference in the case of weak instruments. Overall, the results suggest we can reject the null that the net systemic risk coeﬃcients are equal to zero in these models. 
	25
	Because the F-statistics are slightly smaller th

	The results of this study are shown in Table 9. Columns (1) to (3) in this table show the eﬀect of the net transmission factor (Net β), and columns (4) to (6) show the eﬀects of the net shock. Since these two components could be correlated (banks with higher net losses might also display a larger net transmission factor), we include both components together in columns (7) to (9). This table suggests the eﬀect is driven by the transmission component, as shown by the positive and signiﬁcant relationship betwe
	-

	These results remain unchanged when including both risk components in the default risk models in columns (7) to (9). The net β is signiﬁcant and positively related, and the net losses are negatively related to insolvency risk. The eﬀect is also economically relevant. Taking the coeﬃcients in the last three columns of this table, a one standard deviation increase in the net β (0.24) decreases a bank’s distance to default and the Log(Z-Score) by 0.17 and 0.31 standard deviations, respectively, and increases t
	The results in the previous tables do not answer the question through which channel net systemic exposure increases bank default risk. Banks can become riskier in two non-mutually exclusive dimensions: (1) by taking riskier activities or reducing risk management, thus increasing the variance of returns, or (2) by increasing leverage or taking up less proﬁtable activities, thus reducing the buﬀer to avoid default. Our model suggests net systemic risk increases default risk though the ﬁrst channel. We investi
	separately.
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	ur sample is reduced when calculating distance to default. 
	26
	We focus on the Z-Score for this study since o

	capital equity ratio plus ROA (numerator) and the standard deviation of ROA over the relevant period (the denominator). The evidence in this table conﬁrms the net transmission eﬀect operates through increasing the volatility of proﬁts, rather than by reducing leverage or proﬁt levels (columns (1) and (2)). Further disaggregating proﬁts into interest income and non-interest income, columns (3) and (4) show that the main channel through which net systemic exposure aﬀects default risk is the volatility of non-
	Taken together, the evidence in this paper suggests high-net exposure banks engaged in activities that increased systemic exposure, such as derivatives trading, leaving banks exposed to the soundness of other counterparties. With the extensive involvement in these activities, banks suﬀered from increased income volatility during the crisis, increasing default risk. Trading activities were carried out at the cost of performing other activities that would have increased banks’ systemic contribution but would 


	Conclusion 
	Conclusion 
	The regulatory treatment of large banks poses unique challenges to regulators. Existing regulatory regimes, such as the Dodd-Frank Act of 2012 and the Basel III framework, have focused on reinforcing the capital 
	buﬀers of large banks to improve systemic stability through reducing these banks’ default risk and their impact on the rest of the system. The apparent intention behind these regulations is to shield the system from the “too big to fail” banks by making them more resilient. 
	In contrast to the philosophy behind these regulations, we extensively document that the largest US bank holding companies are consistently more vulnerable to shocks originating from the rest of the banking system than vice versa. To understand the underpinnings of this phenomenon, we examine the determinants of a bank’s net exposure to the ﬁnancial system (its exposure net of its impact) ﬁrst theoretically and then empirically. We discover theoretically that optimally diversiﬁed banks undertake trading act
	Moreover, we show that the larger this asymmetry, i.e., the more exposed a large bank is to the system relative to its impact on it, the riskier it becomes. Examining the channels behind this relation, we ﬁnd that the eﬀect on bank default risk is driven by the net transmission factor of shocks rather than the size of net shocks, and that the link between this factor and insolvency risk runs through activities such as trading, increasing the volatility of proﬁts. 
	Our ﬁndings oﬀer two important policy implications. First, interconnectedness in the ﬁnancial system 
	can be directional, and bank regulation will increasingly need to reﬂect this to stay ahead of future risks to 
	systemic stability. It might be beneﬁcial for regulation to focus on containing and imposing buﬀers on high net exposure banks, rather than just large banks or banks displaying a high systemic contribution. Second, default risk increases with the net system-to-bank shock transmission factor, which in turn is positively related to bank size and the use of credit derivatives. An eﬃcient regulation should therefore focus ﬁrst on reducing such net exposures, rather than subsequently buﬀering the default risks a
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	Figures 
	Figures 
	Figure 1. Evolution of banks’ average systemic risk exposure and contribution 
	Figure
	The ﬁgure shows the evolution of banks’ average systemic risk exposure and contribution as measured by Adrian and Brunnermeier’s (2016) Exposure ΔCoVaR and ΔCoVaR metrics, respectively. The graph displays the cross-sectional average across the top 200 US bank holding companies by assets as measured at Q4:2006. The time frame shown is from Q1:2004 to Q4:2012. 
	Figure 2. Banks’ net exposure and size 
	Figure
	The ﬁgure shows a plot of the systemic risk exposures versus systemic risk contributions for two sets of banks, as measured by Adrian and Brunnermeier’s (2016) Exposure ΔCoVaR and ΔCoVaR metrics. Panel A shows the 20 smallest banks in the sample, and Panel B – the 20 largest banks. Banks with an Insolvency dummy equal to 1 are ﬂagged in red. The full sample consists of the 200 top US bank holding companies by assets as measured at Q4:2006. 
	Figure 3. Banks’ net exposure and risk 
	Figure
	The ﬁgure shows a plot of the systemic risk exposures versus systemic risk contributions for two sets of banks, as measured by Adrian and Brunnermeier’s (2016) Exposure ΔCoVaR and ΔCoVaR metrics. Panel A shows the 20 safest banks in the sample, and Panel B, the 20 riskiest banks, as ranked by their distance to default (DD). Banks with an Insolvency dummy equal to 1 are ﬂagged in red. The full sample consists of the 200 top US bank holding companies by assets as measured at Q4:2006. 
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	Tables 
	Tables 
	Table 1: Selected Summary Statistics by Net ΔCoVaR Exposure and Period 
	Pre-Crisis Crisis 
	Above-median Below-Median Above-median Below-Median Mean Std. Dev. Mean Std. Dev. Std. Diﬀ Mean Std. Dev. Mean Std. Dev. Std. Diﬀ 
	Net ΔCoVaR 0.007 0.005 -0.004 0.003 2.492*** 0.031 0.017 0.004 0.006 2.168*** Log(Z-Score) 3.416 0.380 3.400 0.354 0.045 2.809 0.908 3.292 0.702 -0.596*** DD 8.07 2.222 7.842 2.900 0.088 2.583 1.115 3.217 1.917 -0.404*** Log(assets) 15.470 1.919 14.950 0.894 0.351*** 15.500 1.768 15.200 1.201 0.196* Fiduciary/TI .020 .0416 .0243 .0356 -0.117 .0195 .041 .025 .037 -0.150 Securitization/TI 0.001 0.005 0.0004 0.003 0.165 .0195 .041 .025 .037 -0.150 Trading/TI 0.005 0.015 0.001 0.004 0.390*** 0.003 0.014 0.001 0
	Summary statistics for banks with diﬀerent Net ΔCoVaR exposures over two time periods. The table displays covariate means and standard deviations for banks with above-median and below-median Net CoVaR exposures before and during the crisis. The left panel shows statistics for the pre-crisis period (2006:Q1-2007:Q2), and the right panel – for the crisis period (2007:Q3-2008:Q4). The normalized diﬀerences in means are also displayed, with asterisks (*) showing the signiﬁcance level of the one-sided t-test for
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	Table 2: Descriptive Statistics 
	N 
	N 
	N 
	mean 
	sd 
	p25 
	p50 
	p75 
	N 
	mean 
	sd 
	p25 
	p50 
	p75 

	TR
	Pre-crisis period 
	Crisis period 

	ΔCoVaRE 
	ΔCoVaRE 
	200 
	0.013 
	0.008 
	0.010 
	0.013 
	0.017 
	200 
	0.044 
	0.027 
	0.034 
	0.044 
	0.057 

	ΔCoVaRC 
	ΔCoVaRC 
	200 
	0.012 
	0.007 
	0.007 
	0.014 
	0.018 
	200 
	0.027 
	0.016 
	0.013 
	0.028 
	0.037 

	Net ΔCoVaR 
	Net ΔCoVaR 
	200 
	0.001 
	0.007 
	-0.003 
	-0.000 
	0.006 
	200 
	0.018 
	0.013 
	0.009 
	0.017 
	0.027 

	βE 
	βE 
	200 
	0.537 
	0.326 
	0.405 
	0.534 
	0.689 
	200 
	0.537 
	0.326 
	0.405 
	0.534 
	0.689 

	βC 
	βC 
	200 
	0.336 
	0.209 
	0.176 
	0.344 
	0.487 
	200 
	0.336 
	0.209 
	0.176 
	0.344 
	0.487 

	Net β CoVaR 
	Net β CoVaR 
	200 
	0.210 
	0.243 
	0.044 
	0.186 
	0.377 
	200 
	0.210 
	0.243 
	0.044 
	0.186 
	0.377 

	ShockE 
	ShockE 
	200 
	0.025 
	0.000 
	0.025 
	0.025 
	0.025 
	200 
	0.083 
	0.003 
	0.083 
	0.083 
	0.083 

	ShockC 
	ShockC 
	200 
	0.050 
	0.038 
	0.034 
	0.040 
	0.046 
	200 
	0.093 
	0.041 
	0.070 
	0.081 
	0.105 

	Net shock CoVaR 
	Net shock CoVaR 
	200 
	-0.025 
	0.036 
	-0.022 
	-0.015 
	-0.009 
	200 
	-0.013 
	0.044 
	-0.022 
	0.002 
	0.013 

	Log(βE T ) 
	Log(βE T ) 
	172 
	0.332 
	0.522 
	0.111 
	0.507 
	0.634 
	176 
	0.221 
	0.379 
	0.129 
	0.327 
	0.443 

	Log(βC T ) 
	Log(βC T ) 
	172 
	-1.274 
	0.376 
	-1.502 
	-1.268 
	-1.052 
	176 
	-1.081 
	0.323 
	-1.262 
	-1.051 
	-0.858 

	Net Log(βT ) 
	Net Log(βT ) 
	172 
	1.611 
	0.607 
	1.224 
	1.738 
	2.040 
	176 
	1.305 
	0.427 
	1.031 
	1.299 
	1.581 

	MESE 
	MESE 
	197 
	0.012 
	0.007 
	0.009 
	0.013 
	0.016 
	199 
	0.043 
	0.022 
	0.031 
	0.047 
	0.056 

	MESC 
	MESC 
	198 
	0.006 
	0.004 
	0.004 
	0.008 
	0.009 
	199 
	0.039 
	0.022 
	0.027 
	0.043 
	0.055 

	Net MES 
	Net MES 
	197 
	0.005 
	0.005 
	0.003 
	0.005 
	0.008 
	199 
	0.004 
	0.013 
	-0.004 
	0.002 
	0.011 

	DD 
	DD 
	190 
	7.956 
	2.579 
	5.965 
	7.532 
	9.235 
	190 
	2.890 
	1.584 
	2.174 
	2.590 
	3.128 

	Log(Z-Score) 
	Log(Z-Score) 
	200 
	3.408 
	0.366 
	3.184 
	3.352 
	3.585 
	199 
	3.052 
	0.845 
	2.708 
	3.324 
	3.588 

	Log(ROA+Equity/TA) 
	Log(ROA+Equity/TA) 
	200 
	-2.349 
	0.211 
	-2.490 
	-2.350 
	-2.229 
	200 
	-2.396 
	0.235 
	-2.520 
	-2.382 
	-2.224 

	Log(SD(ROA)) 
	Log(SD(ROA)) 
	200 
	-5.756 
	0.376 
	-5.915 
	-5.709 
	-5.499 
	199 
	-5.450 
	0.749 
	-5.924 
	-5.672 
	-5.203 

	Log(SD(Interest)) 
	Log(SD(Interest)) 
	200 
	-4.693 
	0.215 
	-4.831 
	-4.692 
	-4.548 
	199 
	-4.597 
	0.202 
	-4.699 
	-4.602 
	-4.473 

	Log(SD(Non-interest)) 
	Log(SD(Non-interest)) 
	200 
	-5.480 
	0.416 
	-5.637 
	-5.412 
	-5.219 
	199 
	-5.197 
	0.492 
	-5.426 
	-5.227 
	-4.961 

	Log(SD(Trading)) 
	Log(SD(Trading)) 
	200 
	0.00007 
	0.0002 
	0 
	0 
	0 
	199 
	0.0001 
	0.0003 
	0 
	0 
	0.00002 

	Log(SD(Securitization)) 
	Log(SD(Securitization)) 
	200 
	0.00002 
	0.0001 
	0 
	0 
	0 
	199 
	0.00002 
	0.00009 
	0 
	0 
	0 

	Log(SD(Fiduciary)) 
	Log(SD(Fiduciary)) 
	200 
	0.0005 
	0.0008 
	0 
	0.0002 
	0.0006 
	199 
	0.0005 
	0.0009 
	0 
	0.0003 
	0.0006 

	Insolvency 
	Insolvency 
	200 
	0.110 
	0.314 
	0 
	0 
	0 

	Log(Assets) 
	Log(Assets) 
	200 
	15.210 
	1.516 
	14.113 
	14.714 
	15.682 
	200 
	15.352 
	1.515 
	14.281 
	14.861 
	15.874 

	Deposits/TA 
	Deposits/TA 
	200 
	0.754 
	0.079 
	0.709 
	0.771 
	0.812 
	200 
	0.728 
	0.081 
	0.682 
	0.742 
	0.785 

	Non-IntInc/TI 
	Non-IntInc/TI 
	200 
	0.167 
	0.094 
	0.105 
	0.154 
	0.215 
	200 
	0.167 
	0.092 
	0.109 
	0.155 
	0.222 

	Fiduciary/TI 
	Fiduciary/TI 
	200 
	0.022 
	0.039 
	0 
	0.010 
	0.029 
	200 
	0.022 
	0.039 
	0 
	0.011 
	0.029 

	Securitization/TI 
	Securitization/TI 
	200 
	0.001 
	0.004 
	0 
	0 
	0 
	200 
	0.001 
	0.003 
	0 
	0 
	0 

	Trading/TI 
	Trading/TI 
	200 
	0.003 
	0.011 
	0 
	0 
	0 
	200 
	0.002 
	0.011 
	0 
	0 
	0 

	Loans/TA 
	Loans/TA 
	200 
	0.697 
	0.110 
	0.656 
	0.714 
	0.767 
	200 
	0.714 
	0.105 
	0.670 
	0.731 
	0.782 

	LLP/TL 
	LLP/TL 
	200 
	0.001 
	0.001 
	0.001 
	0.001 
	0.001 
	200 
	0.007 
	0.006 
	0.003 
	0.004 
	0.008 

	Asset growth 
	Asset growth 
	200 
	0.025 
	0.026 
	0.009 
	0.021 
	0.035 
	200 
	0.023 
	0.024 
	0.008 
	0.021 
	0.036 

	TARP 
	TARP 
	200 
	0.425 
	0.496 
	0 
	0 
	1 

	ROA 
	ROA 
	200 
	0.006 
	0.002 
	0.005 
	0.006 
	0.007 
	200 
	0.003 
	0.007 
	0.001 
	0.005 
	0.007 

	Leverage 
	Leverage 
	200 
	0.908 
	0.020 
	0.898 
	0.911 
	0.922 
	200 
	0.909 
	0.019 
	0.895 
	0.911 
	0.921 

	Deposits/TL 
	Deposits/TL 
	200 
	0.831 
	0.087 
	0.787 
	0.853 
	0.892 
	200 
	0.802 
	0.090 
	0.754 
	0.816 
	0.867 

	RE/TL 
	RE/TL 
	200 
	0.726 
	0.145 
	0.647 
	0.747 
	0.818 
	200 
	0.727 
	0.145 
	0.640 
	0.747 
	0.832 

	C&I/TL 
	C&I/TL 
	200 
	0.165 
	0.096 
	0.099 
	0.158 
	0.215 
	200 
	0.168 
	0.096 
	0.097 
	0.155 
	0.221 

	HH/TL 
	HH/TL 
	200 
	0.065 
	0.068 
	0.014 
	0.041 
	0.094 
	200 
	0.060 
	0.067 
	0.012 
	0.033 
	0.079 

	GrossCDS/TA 
	GrossCDS/TA 
	200 
	0.001 
	0.006 
	0 
	0 
	0 
	200 
	0.001 
	0.006 
	0 
	0 
	0 

	NetCDS/TA 
	NetCDS/TA 
	200 
	0.00008 
	0.0004 
	0 
	0 
	0 
	200 
	0.00009 
	0.0004 
	0 
	0 
	0 

	MBSheld/TA 
	MBSheld/TA 
	200 
	0.008 
	0.025 
	0 
	0 
	0 
	200 
	0.006 
	0.022 
	0 
	0 
	0 


	This table reports summary statistics of the main regression variables. The statistics are based on averaged data for the pre-crisis and crisis periods. The pre-crisis period spans from Q1:2006 to Q2:2007, and the crisis period spans from Q3:2007 to Q4:2008. Deﬁnitions and sources of variables are listed in Internet Appendix B. 
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	Table 3
	Table 3
	Table 3
	: Correlations of Systemic Risk Metrics 

	Panel A: Exposure measures ΔCoVaRLog(βT) MES
	Panel A: Exposure measures ΔCoVaRLog(βT) MES
	E 
	E 
	E 


	ΔCoVaR
	ΔCoVaR
	E 

	1 

	Log(βT) 0.04 
	Log(βT) 0.04 
	E 

	1 

	MES0.55 0.30 
	MES0.55 0.30 
	E 

	1 

	Panel B: Contribution measures ΔCoVaRLog(βT) MES
	Panel B: Contribution measures ΔCoVaRLog(βT) MES
	C 
	C 
	C 


	ΔCoVaR
	ΔCoVaR
	C 

	1 

	Log(βT) 0.47 
	Log(βT) 0.47 
	C 

	1 

	MES0.59 0.33 
	MES0.59 0.33 
	C 

	1 

	Panel C: Net exposure measures Net ΔCoVaR Net Log(βT ) Net MES 
	Panel C: Net exposure measures Net ΔCoVaR Net Log(βT ) Net MES 

	Net ΔCoVaR 
	Net ΔCoVaR 
	1 

	Net Log(βT ) 0.07 
	Net Log(βT ) 0.07 
	1 

	Net MES 0.28 0.38 
	Net MES 0.28 0.38 
	1 


	This table reports correlations between the systemic risk variables. The statistics are based on quarterly data for the pre-crisis period which spans from Q1:2006 to Q2:2007. Deﬁnitions and sources of variables are listed in Internet Appendix B. 
	Table 4: BHCs Ranked According to Net CoVaR Exposure (Pre-Crisis) 
	Name Total Assets Net CoVaR exposure 1 SILVER STATE BANCORP 1,180 0.02365 2 RELIANCE BANCSHARES, INC. 869 0.02024 3 UCBH HOLDINGS, INC. 9,322 0.02015 4 CORUS BANKSHARES, INC. 9,688 0.01932 
	CAPITAL CORP OF THE WEST 1,870 0.01879 6 BANNER CORPORATION 3,551 0.01600 7 BANK OF AMERICA CORPORATION 1,464,009 0.01575 8 CENTRAL PACIFIC FINANCIAL CORP. 5,413 0.01523 9 SECURITY BANK CORPORATION 2,320 0.01432 
	UNITED COMMUNITY BANKS, INC. 6,872 0.01409 11 CITIGROUP INC. 1,847,525 0.01409 12 WACHOVIA CORPORATION 631,471 0.01314 13 FIFTH THIRD BANCORP 103,144 0.01267 14 SVB FINANCIAL GROUP 5,700 0.01227 
	HUNTINGTON BANCSHARES INCORPORATED 35,739 0.01158 16 PAB BANKSHARES, INC. 1,113 0.01110 17 OLD SECOND BANCORP, INC. 2,443 0.01105 18 MARSHALL & ILSLEY CORPORATION 54,781 0.01087 19 HORIZON FINANCIAL CORP. 1,228 0.01067 
	MBT FINANCIAL CORP. 1,572 0.01061 21 WESTERN ALLIANCE BANCORPORATION 4,186 0.01058 22 ZIONS BANCORPORATION 46,411 0.01057 23 PORTER BANCORP, INC. 1,061 0.01055 24 FNB CORP. 1,713 0.01050 
	CASCADE BANCORP 2,107 0.01008 26 REGIONS FINANCIAL CORPORATION 112,784 0.00976 27 INDEPENDENT BANK CORPORATION 3,395 0.00965 28 WELLS FARGO & COMPANY 497,191 0.00924 29 FIDELITY SOUTHERN CORPORATION 1,565 0.00913 
	DEARBORN BANCORP, INC. 876 0.00890 31 BANCTRUST FINANCIAL GROUP, INC. 1,350 0.00838 32 STATE STREET CORPORATION 108,156 0.00815 33 INTERVEST BANCSHARES CORPORATION 1,936 0.00809 34 PRINCETON NATIONAL BANCORP, INC. 992 0.00802 
	IRWIN FINANCIAL CORPORATION 6,291 0.00800 36 NEXITY FINANCIAL CORPORATION 864 0.00798 37 SUNTRUST BANKS, INC. 181,998 0.00797 38 EAST WEST BANCORP, INC. 10,405 0.00789 39 CENTERSTATE BANKS OF FLORIDA, INC. 1,077 0.00773 
	HERITAGE COMMERCE CORP 1,122 0.00772 41 BEVERLY HILLS BANCORP INC. 1,535 0.00707 42 GREENE COUNTY BANCSHARES, INC. 1,921 0.00701 43 U.S. BANCORP 217,230 0.00697 44 TEMECULA VALLEY BANCORP INC. 1,159 0.00694 
	KEYCORP 93,660 0.00675 46 BOSTON PRIVATE FINANCIAL HOLDINGS, INC. 5,595 0.00670 47 WEST COAST BANCORP 2,372 0.00633 48 SYNOVUS FINANCIAL CORP. 31,502 0.00630 49 PINNACLE FINANCIAL PARTNERS, INC. 2,091 0.00587 
	MACATAWA BANK CORPORATION 2,043 0.00581 
	This table shows the 50 US banks with highest net CoVaR exposure in our sample, ranked in descending order as of the pre-crisis period (Q1:2006-Q2:2007). Average assets are shown in millions of US dollars. 
	Table 5: ΔCoVaR Determinants 
	(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) VARIABLES ΔCoVaRE ΔCoVaRE ΔCoVaRE ΔCoVaRE ΔCoVaRE ΔCoVaRC ΔCoVaRC ΔCoVaRC ΔCoVaRC ΔCoVaRC Net ΔCoVaR Net ΔCoVaR Net ΔCoVaR Net ΔCoVaR Net ΔCoVaR 
	48 
	Log(assets)t−1 0.0107*** 0.0109*** 0.0112*** 0.0121*** 0.0123*** 0.00871*** 0.00757*** 0.00826*** 0.00968*** 0.00811*** 0.00112 0.00280*** 0.00190** 0.00145* 0.00250** (0.00136) (0.000874) (0.00123) (0.00116) (0.00189) (0.000841) (0.000679) (0.000726) (0.000640) (0.000828) (0.000803) (0.000705) (0.000763) (0.000781) (0.00105) Fiduciary/TIt−1 -0.0246 -0.0199 0.0317** 0.0269** -0.0552* -0.0394* (0.0303) (0.0314) (0.0152) (0.0131) (0.0288) (0.0238) Securitization/TIt−1 -0.665* -0.575 -0.129 -0.192 -0.444** -0.
	(0.373) (0.432) (0.254) (0.318) (0.216) (0.200) Trading/TIt−1 0.101 0.166 -0.173* -0.0857 0.255*** 0.258** (0.145) (0.169) (0.0939) (0.105) (0.0903) (0.101) 
	LLP/TLt−1 -1.582 -1.581 -1.802*** -1.558** 0.774 0.447 (1.077) (1.115) (0.676) (0.777) (0.827) (1.012) ROAt−1 1.087 0.944 0.883** 0.936** 0.512 0.236 (0.708) (0.678) (0.423) (0.393) (0.538) (0.559) Loans/TAt−1 0.00661 0.00621 -0.00660 -0.00135 0.0183* 0.0140 (0.0131) (0.0146) (0.00780) (0.00918) (0.00986) (0.0127) RE/TLt−1 -0.00138 -0.00311 0.0185** 0.0228* -0.0145 -0.0197 (0.0135) (0.0184) (0.00862) (0.0122) (0.0119) (0.0150) C&I/TLt−1 0.00772 -0.00209 0.0434*** 0.0481*** -0.0301*** -0.0420*** (0.0149) (0.
	GrossCDS/TAt−1 -0.326 0.0125 -0.467** -0.437** 0.167 0.403** (0.231) (0.237) (0.221) (0.185) (0.211) (0.160) NetCDS/TAt−1 -5.220 -8.251* -2.100 0.869 -1.544 -6.187* (3.785) (4.671) (4.473) (3.358) (3.899) (3.147) MBSheld/TAt−1 -0.00295 0.00738 0.0579** 0.0687** -0.0687** -0.0567 (0.0276) (0.0312) (0.0237) (0.0319) (0.0302) (0.0441) 
	Observations 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 R-squared 0.378 0.360 0.357 0.365 0.388 0.626 0.598 0.568 0.601 0.681 0.081 0.130 0.048 0.055 0.196 
	This table presents the results of cross-section regressions of net systemic risk exposure measures on balance-sheet variables. The dependent variable is a bank’s ΔCoVaRin columns (1) to (5), ΔCoVaRin columns (6)-(10), and Net ΔCoVaR in columns (11) to (15). All regressions contain the sample of the 200 largest banks in Q4:2006. The data is averaged within each period (pre-crisis and crisis), where the pre-crisis period spans from Q1:2006 to Q2:2007, and the crisis period spans from Q3:2007 to Q4:2008. Deﬁn
	E 
	E 

	Table 6: Net Systemic Risk Components’ Determinants 
	(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) VARIABLES Net β CoVaR Net β CoVaR Net β CoVaR Net β CoVaR Net β CoVaR Net shock CoVaR Net shock CoVaR Net shock CoVaR Net shock CoVaR Net shock CoVaR 
	Log(assets)t−1 0.0315** 0.0638*** 0.0394*** 0.0266* 0.0513*** 0.00310 -0.00271 0.00501 0.00559** 0.000805 (0.0152) (0.0141) (0.0140) (0.0144) (0.0196) (0.00234) (0.00189) (0.00312) (0.00227) (0.00328) Fiduciary/TIt−1 -1.253** -0.883* 0.245** 0.175** (0.610) (0.509) (0.100) (0.0841) Securitization/TIt−1 -7.893 -4.045 1.418** 0.709 (4.944) (4.392) (0.637) (0.461) Trading/TIt−1 4.595** 4.148** -0.610** -0.688** 
	(1.981) (2.090) (0.285) (0.279) LLP/TLt−1 22.72* 14.97 -9.543** -8.122* (12.52) (15.11) (4.203) (4.176) 
	ROAt−1 3.917 -1.242 1.142 2.008 (8.787) (8.515) (2.631) (2.489) Loans/TAt−1 0.418** 0.313 -0.0810** -0.0613* (0.173) (0.223) (0.0316) (0.0363) RE/TLt−1 -0.242 -0.355 0.0149 0.0409 
	(0.223) (0.269) (0.0458) (0.0506) C&I/TLt−1 -0.513** -0.714*** 0.117** 0.141** (0.210) (0.272) (0.0532) (0.0547) 
	HH/TLt−1 -1.361*** -1.506*** 0.207*** 0.231*** (0.274) (0.304) (0.0603) (0.0621) Leveraget−1 -1.037 -0.849 0.357* 0.368** (1.007) (0.936) (0.192) (0.164) Deposits/TLt−1 0.0540 0.267 0.0467 -0.00458 (0.245) (0.242) (0.0662) (0.0678) GrossCDS/TAt−1 4.274 7.920** -0.708* -0.686 (4.400) (3.636) (0.384) (0.453) NetCDS/TAt−1 3.981 -75.56 -4.410 3.673 
	(76.24) (66.87) (6.075) (6.489) MBSheld/TAt−1 -1.791*** -1.477* 0.275*** 0.223* (0.527) (0.785) (0.0599) (0.117) 
	Observations 200 200 200 200 200 200 200 200 200 200 R-squared 0.117 0.194 0.067 0.101 0.279 0.131 0.171 0.036 0.046 0.311 
	This table presents the results of cross-section regressions of net systemic risk exposure components on balance-sheet variables. The dependent variable is a bank’s Net β CoVaR in columns 
	(1) to (5) and Net shock CoVaR in columns (6) to (10). All regressions contain the sample of the 200 largest banks in Q4:2006. The data is averaged within each period (pre-crisis and crisis), where the pre-crisis period spans from Q1:2006 to Q2:2007, and the crisis period spans from Q3:2007 to Q4:2008. Deﬁnitions and sources of control variables are listed in Internet Appendix B. All models are estimated using robust standard errors (in parentheses). ***, **, and * denote signiﬁcance at the 1%, 5%, and 10% 
	Table 7: Default Risk and Systemic Risk 
	(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) VARIABLES DD Log(Z-Score) Insolvency DD Log(Z-Score) Insolvency DD Log(Z-Score) Insolvency DD Log(Z-Score) Insolvency 
	50 
	ΔCoVaR-21.25 -7.593 -1.309 -23.11 -14.10 0.133
	E 

	t−1 
	(14.21) (13.10) (2.090) (14.38) (15.05) (1.705) ΔCoVaR9.015 39.18*** -11.51*** 13.68 42.29*** -11.55***
	C 

	t−1 
	(22.23) (13.08) (2.929) (22.09) (13.46) (2.994) Net Δ CoVaRt−1 -26.32* -41.53*** 6.469** (15.54) (11.25) (2.614) Log(assets)t−1 -0.0886 -0.106 0.0449** -0.181** -0.193*** 0.0528*** -0.105 -0.149* 0.0523*** -0.117 -0.0531 0.0222 (0.0930) (0.0746) (0.0194) (0.0899) (0.0615) (0.0158) (0.0978) (0.0758) (0.0164) (0.0889) (0.0580) (0.0172) Deposits/TAt−1 2.859 0.772 -0.296 2.678 0.576 -0.323 2.805 0.635 -0.324 2.716 0.688 -0.362 
	(1.990) (1.054) (0.292) (2.020) (1.011) (0.262) (2.018) (0.976) (0.265) (1.983) (0.921) (0.271) Non-IntInc/TIt−1 3.062** 2.773** -1.033*** 2.999** 2.160** -0.687*** 2.821** 2.013** -0.685*** 2.525** 1.746* -0.762*** 
	(1.337) (1.067) (0.303) (1.335) (0.989) (0.237) (1.292) (0.981) (0.234) (1.236) (0.950) (0.268) Loans/TAt−1 -1.558 -0.720 0.247 -1.604 -0.665 0.219 -1.522 -0.616 0.219 -1.491 -0.538 0.220 
	(1.035) (0.728) (0.199) (1.047) (0.676) (0.193) (1.036) (0.670) (0.193) (1.028) (0.664) (0.197) LLP/TLt−1 -168.4* -118.8** 7.756 -135.3 -60.34 -4.320 -143.8 -64.16 -4.280 -118.7 -80.17 4.303 
	(96.32) (55.71) (9.252) (90.86) (63.92) (10.49) (94.93) (64.69) (10.43) (87.24) (64.13) (9.522) Asset growtht−1 0.468 -3.661 1.126* 1.069 -2.181 0.730 0.995 -2.184 0.731 2.075 -1.534 0.847 
	(3.851) (3.027) (0.680) (3.942) (2.939) (0.575) (4.100) (2.967) (0.577) (3.745) (2.998) (0.708) TARP -0.401** 0.281** -0.190*** -0.478** 0.179 -0.166*** -0.420** 0.218* -0.166*** -0.441** 0.295*** -0.205*** 
	(0.200) (0.119) (0.0565) (0.208) (0.118) (0.0613) (0.204) (0.120) (0.0591) (0.204) (0.108) (0.0585) 
	Observations 190 199 200 190 199 200 190 199 200 190 199 200 (pseudo) R-squared 0.11 0.18 0.33 0.10 0.23 0.41 0.11 0.24 0.40 0.11 0.26 0.37 
	This table presents the results of cross-section regressions of default risk indicators on systemic risk measures. The dependent variable is a bank’s Merton DD in columns (1), (4), (7), and (10) Log(Z-Score) in columns (2), (5), (8), and (11) and Insolvency in columns (3), (6), (9), and (12). ΔCoVaRis the diﬀerence between the value at risk of the bank conditional on the stressed and the median state of theﬁnancial system. ΔCoVaRis the diﬀerence between the value at risk of theﬁnancial system conditional on
	E 
	C 
	E 
	C 

	Table 8: Additional Tests 
	Panel A: Instrumental Variables 
	Panel A: Instrumental Variables 
	Panel A: Instrumental Variables 

	TR
	(1) 
	(2) 
	(3) 
	(4) 
	(5) 
	(6) 

	TR
	DD 
	Log(Z-Score) 
	Insolvency 

	TR
	1st stage 
	2nd stage 
	1st stage 
	2nd stage 
	1st stage 
	2nd stage 

	Reserve city 
	Reserve city 
	0.004*** 
	0.005*** 
	0.004** 

	TR
	(0.0017) 
	(0.0015) 
	(0.0015) 

	Net Δ CoVaRt−1 
	Net Δ CoVaRt−1 
	-103.6** 
	-95.67* 
	32.63 

	TR
	(45.88) 
	(54.81) 
	(20.72) 

	F -test 
	F -test 
	6.33 
	9.01 
	8.10 

	Controls 
	Controls 
	Y 
	Y 
	Y 
	Y 
	Y 
	Y 

	Observations 
	Observations 
	190 
	190 
	199 
	199 
	200 
	200 

	R-squared 
	R-squared 
	0.023 
	0.11 
	0.02 

	Panel B: Alternative Net Systemic Risk Measures 
	Panel B: Alternative Net Systemic Risk Measures 


	(1) 
	(1) 
	(1) 
	(2) 
	(3) 
	(4) 
	(5) 
	(6) 

	DD 
	DD 
	Log(Z-Score) 
	Insolvency 
	DD 
	Log(Z-Score) 
	Insolvency 

	Net Log(βT )t−1 
	Net Log(βT )t−1 
	-0.370** 
	0.0323 
	0.107*** 

	TR
	(0.182) 
	(0.106) 
	(0.0406) 

	Net MESt−1 
	Net MESt−1 
	-80.73*** 
	-6.867 
	11.68*** 

	TR
	(27.09) 
	(12.73) 
	(4.057) 

	Controls 
	Controls 
	Y 
	Y 
	Y 
	Y 
	Y 
	Y 

	Observations 
	Observations 
	165 
	171 
	172 
	188 
	196 
	197 

	(Pseudo) R-squared 
	(Pseudo) R-squared 
	0.18 
	0.22 
	0.39 
	0.18 
	0.20 
	0.42 


	This table presents the results of cross-section regressions of default risk indicators on systemic risk measures. Panel A shows the results of IV regressions using as an instrument the dummy variable Reserve city, which indicates whether the bank is located in a reserve city as deﬁned by the National Banking Acts of 1863–1864. Panel B shows the results of default risk models using as alternative net systemic risk measures the Net Log(βT ) that corresponds to the diﬀerence between log(β) and log(β), and the
	E 
	C 
	E 

	TT MES. Columns (1) and (4) report marginal eﬀects. All regressions contain the sample of the 200 largest banks in Q4:2006. The data is averaged within each period (pre-crisis and crisis), where the pre-crisis period spans from Q1:2006 to Q2:2007, and the crisis period spans from Q3:2007 to Q4:2008. Deﬁnitions and sources of control variables are listed in Internet Appendix B. All models are estimated using robust standard errors (in parentheses). ***, **, and * denote signiﬁcance at the 1%, 5%, and 10% lev
	C 

	Table 9: Default Risk and Systemic Risk Components 
	(1) (2) (3) (4) (5) (6) (7) (8) (9) VARIABLES DD Log(Z-Score) Insolvency DD Log(Z-Score) Insolvency DD Log(Z-Score) Insolvency 
	Net β CoVaRt−1 -1.187*** -1.196*** 0.156** -1.131*** -1.068*** 0.137* (0.400) (0.299) (0.0792) (0.376) (0.284) (0.0728) Net shock CoVaRt−1 3.591 6.410*** -1.188*** 2.261 5.098** -1.077*** (3.963) (1.972) (0.400) (3.965) (2.209) (0.394) Log(assets)t−1 -0.0878 -0.0531 0.0247 -0.178** -0.155*** 0.0408** -0.0992 -0.0797 0.0275 (0.0826) (0.0553) (0.0184) (0.0871) (0.0580) (0.0169) (0.0825) (0.0546) (0.0170) Deposits/TAt−1 2.773 0.711 -0.351 2.446 0.237 -0.162 2.597 0.318 -0.200 
	(1.968) (0.904) (0.271) (1.974) (0.946) (0.277) (1.912) (0.837) (0.277) Non-IntInc/TIt−1 2.287* 1.825* -0.820*** 2.768** 2.141** -0.654** 2.086** 1.388 -0.484** 
	(1.178) (0.947) (0.280) (1.188) (1.020) (0.256) (1.055) (0.908) (0.230) Loans/TAt−1 -1.416 -0.532 0.224 -1.525 -0.551 0.161 -1.364 -0.402 0.156 
	(1.007) (0.663) (0.197) (1.062) (0.706) (0.185) (1.027) (0.656) (0.187) LLP/TLt−1 -118.5 -97.34 6.826 -150.3 -108.6** 6.977 -118.8 -94.52 6.308 
	(92.30) (62.53) (9.207) (92.34) (52.34) (8.672) (92.30) (59.74) (8.622) Asset growtht−1 3.019 -1.314 0.877 1.907 -1.424 0.623 3.665 0.173 0.395 
	(3.756) (3.061) (0.721) (4.066) (2.959) (0.660) (4.062) (2.853) (0.661) TARP -0.374* 0.353*** -0.212*** -0.509** 0.175 -0.155*** -0.408* 0.278** -0.171*** 
	(0.197) (0.108) (0.0583) (0.222) (0.118) (0.0566) (0.211) (0.115) (0.0549) 
	Observations 190 199 200 190 199 200 190 199 200 (Pseudo) R-squared 0.125 0.262 0.357 0.105 0.225 0.385 0.127 0.294 0.409 
	This table presents the results of cross-section regressions of default risk indicators on systemic risk measures. The dependent variable is a bank’s Merton DD in columns (1), (4), and (7), Log(Z-Score) in columns (2), (5), and (8), and Insolvency in columns (3), (6), and (9). Net β CoVaR is the diﬀerence between β− βfrom equations (21) and (20). Net shock CoVaR is Shock CoVaR− Shock CoVaR. All regressions contain the sample of the 200 largest banks in Q4:2006. The data is averaged within each period (pre-c
	E 
	C 
	E 
	C 

	Table 10: Default Risk and Net Transmission Channels 
	(1) (2) (3) (4) (5) (6) (7) Log(ROA+Equity/TA) Log(SD(ROA)) Log(SD(Interest)) Log(SD(Non-interest)) Log(SD(Trading)) Log(SD(Securitization)) Log(SD(Fiduciary)) 
	Net β CoVaRt−1 -0.0674 0.986*** 0.00568 0.427** 0.000218** 3.64e-06 2.03e-05 (0.0826) (0.264) (0.0739) (0.188) (0.000103) (2.49e-05) (0.000247) Net shock CoVaRt−1 1.013** -4.053* 0.601 -0.178 -0.00150* -9.13e-05 -0.00108 (0.510) (2.214) (0.491) (1.264) (0.000855) (8.24e-05) (0.00101) Log(assets)t−1 0.0178 0.0999* -0.00531 -0.0475 6.80e-05*** 1.68e-05*** -0.000104 (0.0159) (0.0514) (0.0135) (0.0390) (2.08e-05) (5.56e-06) (7.08e-05) Deposits/TAt−1 0.0790 -0.173 0.718*** 0.660 -0.000206 -7.80e-05 4.93e-05 (0.2
	Asset growtht−1 1.207 1.084 -0.950 -0.404 1.29e-05 0.000384* -0.00276* (0.864) (2.415) (0.662) (1.676) (0.000804) (0.000196) (0.00142) TARP 0.0130 -0.265** -0.0733*** -0.115 3.62e-05 -4.45e-07 -2.74e-05 (0.0320) (0.103) (0.0273) (0.0717) (3.40e-05) (7.71e-06) (0.000103) 
	Observations 200 199 199 199 199 199 199 R-squared 0.201 0.279 0.252 0.242 0.445 0.383 0.345 
	This table presents the results of cross-section regressions of Log(Z-Score) components on systemic risk measures. The dependent variable is a bank’s Log(ROA+Equity/TA)) in column (1), Log(SD(ROA) in column (2), and components of non-interest income in columns (4) to (6). Net β CoVaR is the diﬀerence between β− βfrom equations 
	E 
	C 

	(21) and (20). Net shock CoVaR is Shock CoVaR− Shock CoVaR. All regressions contain the sample of the 200 largest banks in Q4:2006. The data is averaged within each period (pre-crisis and crisis), where the pre-crisis period spans from Q1:2006 to Q2:2007, and the crisis period spans from Q3:2007 to Q4:2008. Deﬁnitions and sources of control variables are listed in Internet Appendix B. All models are estimated using robust standard errors (in parentheses). ***, **, and * denote signiﬁcance at the 1%, 5%, and
	E 
	C 


	Internet Appendix 
	Internet Appendix 
	A Model Proofs 
	Proof of Lemma 1. Consider two correlated Bernoulli variables X and Z, where X is 0 with probability p and Z is 0 with probability q, and observe that the risky asset Y is simply the transformation Y = RZ. Therefore, Cov(X, Y )= Cov(X, RZ)= RCov(X, Z). Next, recall that 
	E(XZ)= EXEZ + Cov(X, Z) (27) 
	and observe that EX =1 − p and EZ =1 − q. Therefore, the probability of joint success pfrom Matrix 1 equals p= (1 − p)(1 − q)+ Cov(X, Z) = (1 − p)(1 − q)+ RCov(X, Y ). (28) 
	1 
	1 
	−1

	Knowing this we set up the equation system 
	p= (1 − p)(1 − q)+ RCov(X, Y ) (29) p+ p=1 − p (30) 
	1 
	−1
	1 
	2 

	p+ p=1 − q (31) 
	1 
	3 

	X 
	pi = 1 (32) 
	i 
	which produces the solution 
	p=1 − p − q + pq + RCov(X, Y ) (33) p= q(1 − p) − RCov(X, Y ) (34) p= p(1 − q) − RCov(X, Y ) (35) p= pq + RCov(X, Y ). (36) 
	1 
	−1
	2 
	−1
	3 
	−1
	4 
	−1

	as claimed. . 
	∂C ∂E 
	∂C ∂E 

	Proof of Proposition 1. We will show that, at the optimal α,(α) > 0 and (α) < 0. Recall
	∗ 
	∗
	∗

	∂α ∂α 
	from the deﬁnition of contribution (11) and exposure (12) that ∂C dEπdE(πsys|si) dE(πsys|si) 
	=(α ) − (α )= − (α ) (37)
	∗ 
	∗ 
	∗ 

	∂α dα dα dα ∂E dEπdE(πi | Y = 0) dE(πi | Y = 0) 
	=(α ) − (α )= − (α ), (38)
	∗ 
	∗ 
	∗ 

	∂α dα dα dα since the proﬁt derivative is zero at the maximizer α. Hence, we need to focus on the above derivatives of conditional proﬁts. Eﬀect of trading on Contribution. The expected proﬁts conditional on a negative shock are 
	∗ 

	Z 
	p
	p
	2
	(1 − α)+ p
	3
	αR + p
	4 
	· 0

	E(πsys|si)= Eπj dj = − 1+2α − 2α, (39) [0,1]\{i} 
	2 
	1 − p
	1 

	This conditional proﬁt is maximized when ∂E(π | si) 
	This conditional proﬁt is maximized when ∂E(π | si) 
	p
	2 
	p
	3 

	= − + R +2 − 4α = 0 (40)

	∂α 1 − p1 − pwhose maximizer is the root αdeﬁned as 
	1 
	1 
	0 

	.. 
	11 
	p
	3
	R − p
	2

	α= + (41)
	0 

	241 − pTo ﬁnd whether trading increases or reduces contribution near the optimum α, we must evaluate the sign of 
	1 
	∗ 

	∂E(π|si) 27
	the derivative at α. Since the conditional proﬁt function is concave, it increases for
	∗ 

	we knowthat
	∂α 
	α<αand decreases for α>α. Thus, we must ﬁnd whether αis greater or smaller than α. If α<α, then trading increases conditional expected proﬁt, thereby reducing contribution C. We next verify under what conditions α<α. Substituting the values of αand α, we get 
	0 
	0
	∗ 
	0
	∗ 
	0
	∗ 
	0
	∗ 
	0
	p
	3
	R − p
	2

	(p+ p)R − p− p<. (42)
	1 
	3
	1 
	2 

	1 − p
	1 

	rivative of the function (39). 
	27
	This is easily provable by taking the second de

	This simpliﬁes down to 
	R(1 − p1 − p3) < 1 − p1 + p2. Substituting the deﬁnitions of pi in terms of p and q, this inequality reduces down to 
	R(1 − p1 − p3) < 1 − p1 + p2. Substituting the deﬁnitions of pi in terms of p and q, this inequality reduces down to 
	R(1 − p1 − p3) < 1 − p1 + p2. Substituting the deﬁnitions of pi in terms of p and q, this inequality reduces down to 
	(43) 

	Rq + p < 2[1 − q(1 − p) + R−1Cov(X, Y )], 
	Rq + p < 2[1 − q(1 − p) + R−1Cov(X, Y )], 
	(44) 

	or equivalently, to the quadratic inequality in R 
	or equivalently, to the quadratic inequality in R 


	⎞
	⎛ 
	⎛ 
	⎜⎜⎝ 
	⎟⎟⎠

	R +2p< 0. (45)
	R +2p< 0. (45)
	2[1 − q(1 − p)] − p
	2[1 − q(1 − p)] − p


	R− 
	2 

	q 
	{z

	κ 
	}
	| 
	| 
	p

	κ− 2p, where κ is the expression deﬁned by the horizontal brace
	2 

	This expression has two roots, R = κ ± above. 
	The inequality holds for any R between these two roots. Since the smaller root is easily shown to 
	p
	κ− 2p. 
	2 

	However, this upper 
	However, this upper 
	be less than 1, while R> 1 is required, the binding condition is R<κ + 

	bound is so large that it likely does not matter in practice. For example, for p =0.05 and q =0.10, the 
	p
	κ− 2p> 35; thus, the return R of the risky asset has to exceed the return of the safe
	κ− 2p> 35; thus, the return R of the risky asset has to exceed the return of the safe
	2 

	upper bound κ + 

	asset by a factor of 35 for this condition to start to matter. Nonetheless, for completeness we list this as a required condition. 
	As a result, we can conclude that 
	∂E(π|si) ∂α 
	|α∗ 
	> 0, whenever 1 <R<κ + 
	p
	κ− 2p. 
	2 

	Hence, according to 
	equation (42), ∂C/∂α < 0 at and near α. (The “near” part follows since any continuous function preserves 
	∗ 

	its sign in a suﬃciently small neighborhood of a point at which the function’s value is non-zero.) 
	its sign in a suﬃciently small neighborhood of a point at which the function’s value is non-zero.) 
	its sign in a suﬃciently small neighborhood of a point at which the function’s value is non-zero.) 
	Hence, 

	trading reduces contribution C when the upper bound condition on R is met. 
	trading reduces contribution C when the upper bound condition on R is met. 

	Eﬀect of trading on Exposure. The expected proﬁts conditional on a trading shock are 
	Eﬀect of trading on Exposure. The expected proﬁts conditional on a trading shock are 

	E(π | Y 
	E(π | Y 
	p2(1 − α) + p4 · 0 = 0) = (1 − p1 − p3) 
	− 1 + 2α − 2α2 
	(46) 


	= (1 − α) − 1+2α − 2α
	p
	2 
	2 

	q 
	This concave conditional proﬁt function is maximized when 
	∂E(π | Y = 0) 
	p
	2 

	= − +2 − 4α = 0 (47)
	∂α q 
	producing the maximizer 
	1 
	p
	2

	α= − . (48)
	1 

	24q 
	Proﬁts conditional on a trading shock (46) will be decreasing in trading at αif we ﬁnd that α<α, because this conditional proﬁt function is concave. Next we verify under what conditions α<α. By substituting the expressions for the two roots αand αin the last inequality and simplifying, we obtain the necessary condition 
	∗ 
	1 
	∗ 
	1 
	∗ 
	∗ 
	1 

	−p/q < (1 − q)R − (1 − p) . (49)
	2

	| {z } |{z} 
	EY EX ∂E(π|Y =0)
	But this always holds if EY − EX> 0, as already assumed in the model setup. Therefore, |α∗ < 0,
	∂α 
	and by equation (43), ∂E/∂α > 0 at and near the optimal asset mix α. (The “near” part follows since any continuous function preserves its sign in a suﬃciently small neighborhood of a point at which the function’s value is non-zero.) Hence, trading increases exposure E. 
	∗ 

	Net exposure is strictly increasing in trading α. Recalling the deﬁnitions of exposure and contribution from equations (10) and (12), E = π − (1 − α) + TC(α) (50) 
	∗ 
	p
	2 

	q 
	p
	2 
	p
	3

	C = π − (1 − α) − αR + TC(α), (51)
	∗ 

	1 − p1 − p
	1 
	1 

	we can express net exposure NE(α) as 
	p
	p
	2 
	p
	2 
	p
	3

	NE = E − C = − (1 − α) +(1 − α)+ αR 
	q 1 − p1 − p
	1 
	1

	.. 
	q − 1+ p
	q − 1+ p
	1 
	αp
	3

	=(1 − α)p+ R 
	2 

	(1 − p)q 1 − p
	1
	1 

	.. (52) 1 
	p
	2 

	= (1 − α)[q − 1+ p]+ αpR 
	1
	3

	q
	1 − p
	1 

	.. 
	1 
	p
	2
	p
	3 

	= −(1 − α)+ αpR 
	3

	q 
	1 − p
	1 

	The derivative of net exposure with respect to trading α is 
	.. 
	1 
	∂(E − C)
	p
	2
	p
	3 

	=+ pR> 0 (53)
	3

	∂α q 
	(1 − p
	1
	) 

	which is positive. Hence, net exposure increases with trading α. 
	Proof of Proposition 2. (i). Default risk increases with net exposure. 
	dV ar(π)
	dV ar(π)

	We are going to prove that proﬁt variance is increasing in α at the optimal α, i.e., (α) > 0, and
	∗ 
	∗

	dα 
	use this fact jointly with d(E − C)/dα > 0 to prove that proﬁt variance and default risk are both increasing in net exposure E − C. The ﬁrst derivative of the proﬁt variance with respect to α is 
	dV ar(π) 
	dV ar(π) 
	no 

	= α 2p(R − 1)(qR − p)+2p[R(1 − q)+ p]+2pR[Rq + (1 − p)] + 
	1
	2
	3

	dα 
	(54) +2p[qR − p] − 2p[R(1 − q)+ p] 
	1
	2

	and the second derivative is positive 
	dV ar(π) 
	2

	=2p(R − 1)(qR − p)+2p[R(1 − q)+ p]+2pR[Rq + (1 − p)] > 0 (55)
	1
	2
	3

	dα
	2 

	because qR − p> 0,R(1 − q)+ p> 0, and Rq + (1 − p) > 0 (56) 
	(all of these follow from the assumptions R> 1 and q>p). This demonstrates that the proﬁt variance is strictly convex in α, and therefore has a minimum at a variance minimizer αv obtained by setting the ﬁrst derivative (54) equal to zero (we verify αv is not a corner solution below). The question is therefore whether
	 . 
	αv <α, in which case αwould be on the increasing portion of the Var π(α) curve as claimed in the result. 
	∗ 
	∗ 

	The variance minimizer 
	p[qR − p] − p[R(1 − q)+ p]
	1
	2

	αv = > 0 (57) 
	p(R − 1)(qR − p)+ p[R(1 − q)+ p]+ pR[Rq +1 − p] 
	1
	2
	3

	is clearly positive due to the inequalities in (56), but is smaller than or equal to 1/2, from which it follows 
	dV ar(π)
	dV ar(π)

	that αv <α. Hence, (α) > 0. To ascertain this, we verify the inequality αv ≤ 1/2, which (after
	∗ 
	∗

	dα 
	some algebra) reduces down to 
	p(qR − p)[3 − R] − 3p[R(1 − q)+ p] ≤ pR[Rq + (1 − p)]. (58) 
	1
	2
	3

	This is a quadratic inequality in R with a solution of R ∈ [R,R], where the roots Rand R(when existent) are given by 
	1
	2
	1 
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	p
	γ . 
	γ
	2 
	− 12pq(1 − p)(1 − q)

	R,2 = , (59)
	1

	2q(1 − q) 
	and where γ =2p(1 − p)(1 − q)+ RCov(X, Y )(3 + 4p − p). 
	−1
	2

	Since γ contains the covariance term, the inequality’s solution range R ∈ [R,R] depends on the numerical value of Cov(X, Y ) and cannot be checked analytically for all possible values. (For example, for Cov(X, Y ) = 0, the inequality always holds, but for Cov(X, Y ) > 0 the roots also depend on p and q). Instead we verify numerically that the inequality (58) holds for the full range of covariances −pqR ≤ Cov(X, Y ) ≤ Rp(1 − q) and for a wide set of plausible loss probabilities p<q on the interval [0.01, 0.2
	1
	2
	-
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	. 
	dV ar(π)
	dV ar(π)

	convexity of Var π(α) and its continuity, it follows that (α) > 0. We use this fact jointly with the
	∗

	dα 
	fact d(E − C)/dα > 0 to prove default risk is increasing in net exposure E − C. Recall from the previous discussion that net exposure NE(α) ≡ E(α) − C(α) is a diﬀerentiable and strictly increasing function of α, for which the inverse function α(NE) exists and is also strictly increasing 
	. 
	dα
	dα

	in net exposure, i.e. > 0. Now deﬁne the nested function Var π(α(NE)) and observe that, by the
	d(NE) 
	chain rule, the derivative dα 
	chain rule, the derivative dα 
	dV ar(π) 
	dVar(π) 

	= > 0 (60)

	dα d(NE) 
	d(NE) 

	when evaluated at α. Hence, the proﬁt variance V ar(π) is strictly increasing in net exposure at α. Now consider the model Z-Score, 
	∗ 
	∗ 

	1+ π(α)
	Z − Scoremodel = p . (61) 
	V ar(π(α)) 

	We will show that the Z-Score is decreasing in net exposure and in α at the optimal α. Observe that 
	∗ 

	p 
	dV ar(π)
	dV ar(π)

	dZ − Scoremodel π(α) − 0.5(1 + π(α))V ar(π) 
	0
	∗
	V ar(π) 
	∗
	−1/2

	dα
	dα

	= . (62)
	dα ∗ V ar(π(α)) 
	α
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	dV ar(π)
	dV ar(π)

	Since π(α) = 0, V ar(π) ≥ 0, 1+ π(α) ≥ 0, and > 0, we have 
	0
	∗
	∗

	dα 
	α∗ 
	dZ − Scoremodel 
	dZ − Scoremodel 

	< 0. (63)
	dα 
	α∗ 
	At the same time, we also know that dα/d(NE) > 0. Combining these two facts, 
	dα 
	dZ − Scoremodel 
	dZ − Scoremodel 

	= < 0, (64)
	dα d(NE) 
	d(NE) 

	therefore the model predicts that higher net exposure reduces the Z-Score and hence increases default risk at and near the optimal diversiﬁcation point α. 
	∗ 

	(ii) An increase in Cov(X, Y ) reduces the Z-Score. 
	We are interested in the eﬀect of an increase in Cov(X, Y ) on the model Z-Score. 
	p
	dZ − Scoremodel [Eπ]− 0.5(1 + Eπ)(V ar(π))[V ar(π)]
	0 
	V ar(π) 
	1
	/2
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	= . (65)
	dCov(X, Y ) V ar(π) Observe that [Eπ]= 0, because diﬀerentiating the expected proﬁt Eπ =[1 − (p + q)+ pq + RCov(X, Y )](1 − α + αR)+ 
	0 
	−1

	+[q(1 − p) − RCov(X, Y )](1 − α)+ (66) 
	−1

	+[p(1 − q) − RCov(X, Y )]αR − TC(α) with respect to Cov(X, Y ) yields the derivative 
	−1

	[Eπ]= [1 − α + αR − (1 − α) − αR]R=0. (67) 
	0 
	−1 

	Therefore, from equation (65) it follows that 
	. ... 
	dZ − Scoremodel dV ar(π) 
	dZ − Scoremodel dV ar(π) 

	sgn = −sgn , (68)
	dCov(X, Y ) dCov(X, Y ) which implies that the eﬀect on the model Z-Score operates through the proﬁt variance channel: an increase in covariance results in more variable proﬁts, but does not change their average value. Since costs are deterministic, the variance of proﬁt is the same as that of total revenue. Therefore, 
	V ar(π)= p[1 + α(R − 1) − ]+ p[(1 − α) − ]+ 
	1
	TR
	2 
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	TR
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	+ (69) 2 
	+ (69) 2 
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	[αR − 
	TR
	]
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	+ p
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	[−
	TR
	]
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	= −TR + p(1 + α(R − 1))+ p(1 − α)+ p(αR), where is the mean total revenue. Substituting pto pfrom equations (34) to (36) and the mean revenue 
	1
	2 
	2
	2 
	3
	2 
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	value yields 
	V ar(π)= 
	. 
	− [1 − (p + q)+ pq + RCov(X, Y )](1 + α(R − 1))+ 
	−1

	. .. .
	.
	2 

	(1 − α) q(1 − p) − RCov(X, Y )+ αR p(1 − q) − RCov(X, Y ) + [1 − (p + q)+ pq + RCov(X, Y )][1 + α(R − 1)]+ [q(1 − p) − RCov(X, Y )](1 − α)+(αR)[p(1 − q) − RCov(X, Y )]. 
	−1
	−1
	(70) 
	−1
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	−1
	2 
	2
	−1

	The derivative of V ar(π), however, simpliﬁes down to the simple expression 
	..
	dV ar(π) 
	dV ar(π) 

	= R[(1 − α)+ αR]− (1 − α)− (αR)= 
	−1 
	2 
	2 
	2 

	dCov(X, Y ) 
	(71) =2α(1 − α), 
	which is positive for α ∈ (0, 1) and zero when α =0 or α = 1. 
	Putting everything together, we obtain 
	Putting everything together, we obtain 
	Putting everything together, we obtain 

	⎧ 
	⎧ 

	. . ⎪⎨< 0dZ − Scoremodel sgn = −sgn {2α(1 − α)} = dCov(X, Y ) ⎪⎩0 
	. . ⎪⎨< 0dZ − Scoremodel sgn = −sgn {2α(1 − α)} = dCov(X, Y ) ⎪⎩0 
	for α ∈ (0, 1) for α = 0 or 1. 
	(72) 


	Hence an increase in covariance reduces bank stability by lowering the bank’s Z-Score for any interior α. This implies that, conditional on a crisis (increase in covariance), default risk should increase for diversiﬁed banks (which feature an interior α). Non-diversiﬁed banks, by contrast, are not aﬀected by covariance changes, because they hold only one asset. 
	∗

	(iii). Default risk operates through the proﬁt variance channel. Substituting α = αin equation (71), we see that at and near the optimal diversiﬁcation point α, 
	∗ 
	∗ 

	dV ar(TR) 
	dV ar(TR) 

	(α) > 0.
	∗

	dCov(X,Y ) 

	B Variable Deﬁnitions 
	B Variable Deﬁnitions 
	Variable Deﬁnitions 
	Variable Deﬁnitions 
	Variable Deﬁnitions (cont’d) 

	Variable 
	Variable 
	Variable 
	Deﬁnition 
	Source 

	Systemic Risk Measures and Components 
	Systemic Risk Measures and Components 

	ΔCoVaRC 
	ΔCoVaRC 
	ΔCoVaR as deﬁned in equation (1) 
	Authors’ 
	calculation 
	with 

	TR
	Bloomberg price data 

	ΔCoVaRE 
	ΔCoVaRE 
	Exposure ΔCoVaR deﬁned in equation (2) 
	Authors’ 
	calculation 
	with 

	TR
	Bloomberg price data 

	β CoVaRC 
	β CoVaRC 
	Estimated βC from equation (3) 
	Authors’ 
	calculation 
	with 

	TR
	Bloomberg price data 

	β CoVaRE 
	β CoVaRE 
	Estimated βE from equation (4) 
	Authors’ 
	calculation 
	with 

	TR
	Bloomberg price data 

	Shock CoVaRC 
	Shock CoVaRC 
	(V aRi q − V aRi ) from equation (3) 50
	Authors’ 
	calculation 
	with 

	TR
	Bloomberg price data 

	Shock CoVaRE 
	Shock CoVaRE 
	(V aRs q − V aRs ) from equation (4) 50
	Authors’ 
	calculation 
	with 

	TR
	Bloomberg price data 

	MESE 
	MESE 
	A bank’s average return taken over the days scoring the 5% 
	Authors’ 
	calculation 
	with 

	worst daily returns of the S&P Banks Index for each quarter 
	worst daily returns of the S&P Banks Index for each quarter 
	Bloomberg price data 

	MESC 
	MESC 
	The banking sector’s S&P Banks Index average return taken 
	Authors’ 
	calculation 
	with 

	over the days scoring the 5% worst daily returns of the indi-
	over the days scoring the 5% worst daily returns of the indi-
	Bloomberg price data 

	vidual bank for each quarter 
	vidual bank for each quarter 

	βE T,i 
	βE T,i 
	Bank i’s tail exposure to the rest of the system as in van Oordt 
	Authors’ 
	calculation 
	with 

	and Zhou (2019a), estimated by EVT 
	and Zhou (2019a), estimated by EVT 
	Bloomberg price data 

	βC T,i 
	βC T,i 
	The system’s tail exposure to bank i obtained by inverting 
	Authors’ 
	calculation 
	with 

	the conditioning in van Oordt and Zhou (2019a), estimated 
	the conditioning in van Oordt and Zhou (2019a), estimated 
	Bloomberg price data 

	by EVT 
	by EVT 

	Net Exposure Measures 
	Net Exposure Measures 

	Net ΔCoVaR 
	Net ΔCoVaR 
	ΔCoVaRE − ΔCoVaRC 
	Authors’ calculation 

	Net β CoVaR 
	Net β CoVaR 
	βE − βC from equations (21) and (20) 
	Authors’ calculation 

	Net shock CoVaR 
	Net shock CoVaR 
	Shock CoVaRE − Shock CoVaRC 
	Authors’ calculation 

	Net MES 
	Net MES 
	MESE − MESC 
	Authors’ calculation 

	Net Log(βT ) 
	Net Log(βT ) 
	log(βE ) − log(βC )T T 
	Authors’ calculation 

	Individual Risk measures 
	Individual Risk measures 

	Z-Score 
	Z-Score 
	[ROA + (Total equity capital/Total assets)]/sd(ROA) 
	Authors’ 
	calculation 
	with 

	TR
	Form FR-Y9C data 

	DD 
	DD 
	Merton distance to default as in Merton (1974) 
	Authors’ 
	calculation 
	with 

	TR
	Bloomberg 
	price 
	data 
	and 

	TR
	Form FR-Y9C 

	Insolvency 
	Insolvency 
	A dummy equal to 1 if the bank failed, was acquired due to in-
	FDIC 
	ED&O 
	database 
	and 

	solvency risk, had a direct subsidiary fail, or had a cease-and-
	solvency risk, had a direct subsidiary fail, or had a cease-and-
	FDIC Failed Banks List 

	desist order from the FDIC during the crisis up to Q4:2010. 
	desist order from the FDIC during the crisis up to Q4:2010. 


	Variable 
	Variable 
	Variable 
	Deﬁnition 
	Source 

	Bank controls 
	Bank controls 

	Log(assets) 
	Log(assets) 
	Logarithm of assets 
	Federal Reserve Form FR-Y9C 

	Fiduciary/TI 
	Fiduciary/TI 
	Fiduciary income over total income 
	Federal Reserve Form FR-Y9C 

	Securitization/TI 
	Securitization/TI 
	Securitization income over total income 
	Federal Reserve Form FR-Y9C 

	Trading/TI 
	Trading/TI 
	Trading income over total income 
	Federal Reserve Form FR-Y9C 

	Loans/TA 
	Loans/TA 
	Total loans as a fraction of total assets 
	Federal Reserve Form FR-Y9C 

	LLP/TL 
	LLP/TL 
	Loan loss provisions over total loans 
	Federal Reserve Form FR-Y9C 

	Asset growth 
	Asset growth 
	Quarterly asset growth 
	Federal Reserve Form FR-Y9C 

	TARP 
	TARP 
	Equals 1 if bank received TARP government aid, 0 otherwise. 
	US Dept. of the Treasury 

	ROA 
	ROA 
	Net income over assets 
	Federal Reserve Form FR-Y9C 

	Leverage 
	Leverage 
	Debt over assets 
	Federal Reserve Form FR-Y9C 

	Deposits/TL 
	Deposits/TL 
	Deposits as fraction of total loans 
	Federal Reserve Form FR-Y9C 

	RE/TL 
	RE/TL 
	Real estate loans over total loans 
	Federal Reserve Form FR-Y9C 

	C&I/TL 
	C&I/TL 
	C&I loans over total loans 
	Federal Reserve Form FR-Y9C 

	HH/TL 
	HH/TL 
	Household loans over total loans 
	Federal Reserve Form FR-Y9C 

	GrossCDS/TA 
	GrossCDS/TA 
	$ of CDS held over total assets 
	Federal Reserve Form FR-Y9C 

	NetCDS/TA 
	NetCDS/TA 
	$ of CDS protection bought minus $ of CDS protection sold 
	Federal Reserve Form FR-Y9C 

	TR
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	C.1 Exposure tail beta and contribution tail beta 
	C.1 Exposure tail beta and contribution tail beta 
	Systemic risk metrics diﬀer in their ability to capture comovements under extreme stress. To robustify our analysis, we use the systemic risk measure of van Oordt and Zhou (2019a), known as tail beta, which captures the sensitivity of a bank’s stock market return to extremely adverse shocks to the ﬁnancial system, based on just a few observations. In its original form, the tail beta is an exposure It is based on a regression of bank returns Ri on system-wide returns Rs, restricted to the q%-tail of the syst
	metric.
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	where the system return is empirically proxied by that of the S&P Banking index. This regression cannot be estimated with OLS due to the low number of tail observations, and is instead estimated with extreme value theory methods (EVT) as in van Oordt and Zhou (2019a). These authors show that for a tail of k observations in a moving window totaling n observations, βcan be estimated as
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	where k/n = q% is the size of the tail, ξs is a tail index estimated separately with the Hill (1975) EVT estimator, and the q% values at risk for the bank and the system (V aRand V aR) are estimated
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	from the lowest k daily returns of the relevant return distribution. The parameter τ is a measure of the tail dependence between the bank and the market, deﬁned as 
	. 
	τi(q) = Pr Ri < −V aR| Rs < −V aR, (75)
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	Hence we superscript it with an “E.” 
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	and is estimated non-parametrically as in Embrechts, De Haan and Huang (2000). The estimation approach and its applications are developed in van Oordt and Zhou (2016) and van Oordt and Zhou (2019b), based on EVT methods as in De Haan and Ferreira (2006). We set the size of the tail at 4% as in van Oordt and Zhou (2016),and the estimation period at two years (about 500 daily observations) following Davydov et al. (Based on the reasoning in van Oordt and Zhou (2019a), we also construct a contribution tail bet
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	2021).
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	restricted to observations when individual bank i’s returns drop within the worst q% of the return distribution. The contribution tail beta βis similarly estimated by EVT as:
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	where ξi is the tail index of individual bank i’s return distribution, estimated with the Hill (1975) estimator. For convenience, we transform βand βin log form, denoting them as Log(β) and Log(β), noting that
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	since the estimated βis between 0 and 1, its logarithm is negative. This does not indicate a negative 
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	contribution to systemic risk. 
	Table 2 shows that, in line with our remaining measures, contribution consistently exceeded exposure both before and during the crisis, resulting in a large positive net beta averaging at 1.61 before and 1.31 during the crisis. The average log exposure tail beta remained similar before and during the crisis, averaging at 0.33 and 0.22, respectively, with the change being statistically insigniﬁcant. The log contribution tail beta increased from -1.27 to -1.08. The variance of these measures did not change si
	ywhere from 2.5% to 5%. 
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	However, our results are robust to tail sizes an

	The intention is to provide a time window closer to the one used by ΔCoVaR while still meeting the minimum sample requirement for EVT estimation. 
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	C.2 Exposure MES and contribution MES 
	C.2 Exposure MES and contribution MES 
	Acharya et al.’s (2017) MES (marginal expected shortfall) is a reduced-form exposure metric aiming to capture the expected capital shortfall of individual bank i, conditional on stress in the rest of the system. By deﬁnition, this is an exposure metric, so we superscript it as MES. The MESfor a bank i is constructed quarterly (the standard frequency in the literature) as the average of i’s daily returns, taken over the days where the system’s returns are within their worst 5% for each quarter. If Ri,d is th
	E 
	E 

	X
	1 
	MES= where I = {worst 5% of days for the system return Rs,d},
	E 

	Ri,d, (78)
	i,t 

	|I| 
	|I| 

	d∈I 
	where Rs,d is the return of the S&P Banking Index. We create the contribution version of this metric, MES, by interchanging the place of the bank versus the system while conditioning on the stress event. Thus, MESis the average of the system’s returns conditional on bank i experiencing tail returns within their worst 5% for the quarter: 
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	MES= where I = {worst 5% of days for i’s return Ri,d}. (79)
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	Since stressed returns are negative, we take the negative values of MESand MESfor ease of interpretation. Thus, higher exposure MES values indicate a higher exposure, and higher contribution MES values indicate a higher impact on the system by bank i. 
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	Consistent with ΔCoVaR and tail beta, Table 2 shows that the exposures of large banks to shocks from the system exceeded their systemic risk contributions. Table 2 shows that both the average exposure and contribution MES increase after the crisis, from 0.012 to 0.043 and from 0.006 to 0.039, respectively, with a positive Net MES both before and during the crisis. The standard deviations of both measures also increase after the crisis, rising from 0.007 to 0.022 and from 0.004 to 0.022. 
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	C.3 Merton distance to default 
	The Merton model uses two nonlinear equations to translate the value and volatility of a ﬁrm’s equity into a Z-score-like metric often dubbed distance to default (DD), calculated as: 
	ln(V/F )+(µ − 0.5σ)T
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	where V is the ﬁrm’s total value, F is the face value of the ﬁrm’s debt, µ is an estimate of the expected annual return of the ﬁrm’s assets, σis the variance of ﬁrm value, and T is the forecast horizon, usually
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	taken as 1 year. The main idea behind this calculation is to subtract the face value of the ﬁrm’s debt from an estimate of the ﬁrm’s market value and then divide this diﬀerence by an estimate of the ﬁrm’s volatility, scaled to the forecast horizon. The more market value exceeds debt given the volatility, the more stable the ﬁrm is. 
	Since the volatility of ﬁrm value V is unknown, Merton’s (1974) bond pricing model is usually invoked to represent ﬁrm equity as a call option on the underlying ﬁrm value with a strike price equal to the face value of the ﬁrm’s debt and a time-to-maturity of T . Merton’s model links observed ﬁrm equity E, the face value of debt F , and ﬁrm value V in a nonlinear equation that can be solved numerically conditional on a few distributional assumptions, making it possible to calculate the distance in equation (





